Mikiji Miyata
Graduate School of Engineering, Osaka University, Department of
Material and Life Science, 2-1 Yamadaoka, Suita, Osaka, 565-0871,
Japan, E-mail: murai@molrec.mls.eng.osaka-u.ac.jp

Solid-state dynamic properties contribute to development of gas
sorption and storage materials with microporous coordination
polymers. Organic crystals function as dynamic materials due to their
flexibility and diversity. We study on steroidal bile acid derivatives
which serve as host components and form dynamic inclusion crystals
for intercalation and enantioresolution of guest molecules. So far,
we reported that cholamide has various types of flexible bilayers
where secondary aliphatic alcohols are accommodated. Among them,
2,2-dimethyl-3-hexanol induces a rare bilayer structure which is
responsible for high enantioselectivity. Here we present intercalation
and enantioresolution of 2,2-dimethyl-3-hexanol by using inclusion
crystals of cholamide with 1,4-dioxane. It was found that guest
exchanges took place with retention of the crystalline state in
appearance. The crystal structures were determined before and after
the intercalation by means of powder X-ray diffraction, indicating
that the intercalation accompanied layer inversion on the lipophilic
sides of the bilayers. Moreover, it was found that the resulting crystals
include (S)-2,2-dimethyl-3-hexanol in over 95% ee yield.

Keywords: inclusion compounds, dipeptides, molecular
recognition

P06.02.29

Structure and polymorphism of trans mono-unsaturated triacylglycerols
Henk Schenk, Jan B. van Mechelen, Rene Peschar
University of Amsterdam, Crystallography, HIMSFNWl, Valckenierstraat
65, Amsterdam, NoordHolland, 1018XE, The Netherlands, E-mail:
h.schenk@uva.nl

Trans fats are in a natural way in small quantities present in
animal foods. Moreover, unsaturated plant fats are often partially
hydrogenated to raise melting temperatures for preparation of foods,
and then, as a minor side reaction, a small part of the cis-bonds will
change into trans-configuration. Like saturated fats, fats with trans
acid residues will have negative effects for human health (1).
The presence of the elaidoyl chain, one of the major trans fatty-acid
chains, is suspected of increasing health risks because it resembles the
steaoyl chain. When incorporated in biological membranes elaidoyl
chains will be influencing the physical-chemical properties of the
membranes. Thus insight in the influence of the differences between
the fatty-acid composition of trans and saturated triacylglycerols
(TAGs) on the conformation and packing, on polymorphic stability,
and on phase-transition behavior, will be useful. By combining
X-ray powder diffraction (XRPD) techniques a better understanding of
trans mono-unsaturated TAGs and their related saturated ones
can be obtained. Synchrotron and advanced laboratory time- and
temperature-resolved XRPD reveal the stability and phase-transition
behavior of the important polymorphs like the β and β'. These results
can be related to the underlying crystal structure packing that can
be obtained from XRPD data using direct-space search techniques.
Our recent results will be discussed including novel meta-stable β'
polymorphs and the structure of one them, methyl-end plane packing
analysis in relation to observed melting points for various subgroups
of TAGs, and the difference in β' to β phase-transition behaviour of
symmetric versus asymmetric TAGs.
(1) The EFSA Journal, 2004, 81, 1-49

Keywords: trans mono-unsaturated triacylglycerols, time-
temperature-resolved diffraction, powder structures

P06.07.28

Enantioselective inclusion of methyl phenyl sulfoxides
by (S)-alkylglycyl-(S)-phenylglycine
Motohiro Akazome, Ai Doba, Katsuyuki Ogura
Graduate School of Engineering, Chiba University, Department of
Applied Chemistry and Biotechnology, 1-33 Yayoicho, Inageku, Chiba,
Chiba, 263-8522, Japan, E-mail: akazome@faculty.chiba-u.jp

As dipeptide host molecules, (S)-alkylglycyl-(S)-phenylglycines
were examined in terms of enantioselective inclusion for racemic methyl
phenyl sulfoxides. Among them, (S)-leucyl-(S)-phenylglycines
(LeuPhg) and (S)-isoleucyl-(S)-phenylglycines (IlePhg)
mainly included S-form of methyl phenyl sulfoxides with high
enantioselectivity. By single crystal X-ray analyses of these inclusion
compounds, it was elucidated that the dipeptide molecules self-
assembled to form layer structures and included the sulfoxides between
these layers by hydrogen bonding between the proton of ‘NH2’ and the
oxygen of the sulfoxide. In the cavity, C-terminal phenyl group of the
dipeptide interacts
with the phenyl group of sulfoxides. In addition to these host-guest
interactions, the two homochiral sulfoxides belonging in upper and
lower layers make a pair having 2-fold rotation axis or 2-fold screw
axis along the channel cavity. In other words, the self-recognition of
sulfoxides made a homochiral pair to achieve high enantioselectivity.

Keywords: inclusion compound, chiral recognition, intercalation