
Keywords: crystallographic analysis, organic crystals, theoretical calculations

P06.10.49

Experimental versus theoretical electron density in the crystals of β-aminophosphonic acids

Jakub M. Wójciecekowski1,2, Henryk Krawczyk1, Lukasz Albrecht1, Wojciech M. Wolf1

1Technical University of Lodz, Chemistry, Zeromskiego 116, Lodz, Lodzkie, 90-924, Poland, 2Institute of General and Ecological Chemistry, Technical University of Lodz, Zeromskiego 116, 90-924 Lodz, Poland, 3Institute of Organic Chemistry, Technical University of Lodz, Zeromskiego 116, 90-924 Lodz, Poland, E-mail: j.m.wojciechowski@gmail.com

Investigated compounds are novel α-substituted-β-aminophosphonic acids which are similar to herbicides used in agriculture [1]. X-ray analysis accompanied by the ab initio B3LYP and MP2 calculations showed high level of electron density delocalizations in all investigated structures and antiperiplanar arrangement around the central C$_a$-C_β bond. The phosphorus atom is located within the center of distorted tetrahedron. The largest distortions follow from the Coulombic repulsion interactions between the oxygen atoms bearing the negative charge. This effect was further investigated with the natural bond orbital methodology. Wavefunctions were calculated at the B3LYP/6-31G$+$+(d,p) level for the X-ray coordinates. In all compounds the main electron density delocalizations involve back-donation from the n_π lone pairs of the phosphonic oxygen atoms to the σ^* orbital of the adjacent P-C_β bond. Those interactions act against the depletion of electron density in the phosphorus originated by the neighboring electronegative oxygen atoms. The molecular conformation is stabilized by the mutual anti α-σ^* stereoelectronic interactions of the P-C_α and N-C_β bonds. In all crystals N atom of the terminal amine group is protonated and adopts virtually tetrahedral geometry with all three hydrogen atoms involved in the intermolecular hydrogen bonding. The crystal structure of 1-(aminomethyl)vinylphosphonic was further examined using the high resolution low temperature X-ray data and the multipole atom model. Experimental electron density was carefully examined and compared with the densities calculated at the MP2 and B3LYP levels of theory. The Bader’s theory Atoms in Molecules was applied. [1] Krawczyk H., Albrecht L., Wójciecekowski J., Wolf W.M. Tetrahedron, 2008, in press.

Keywords: multipole refinements, aminophosphonic and phosphonic acids, stereoelectronic effects

P06.10.50

Lessons from a decade of X-ray crystallographic work on N-(hydroxy)thiazole-2(3H)-thione derivatives

Ingrid Svoboda1, Hartmut Fues1, Jens Hartung2

1Darmstadt University of Technology, Materials Science, Petersenstr. 23, Darmstadt, Hessa, D-64287, Germany, 2TU Kaiserslautern, Department of Organic Chemistry, Germany, E-mail: svoboda@tu-darmstadt.de

Keywords: thiazole, thiohydroxamic acid O-ester, thione