P07.10.57

Quantum effects in $S=1/2$ two-dimensional Heisenberg antiferromagnet in applied magnetic field

Nikolay Tsyrulin1,2, Michel Kenzelmann1,2, Fan Xiao3, Peter Link4, Astrid Schneiderwind5, Arno Hies6, Christopher P. Landee7, Mark M. Turnbull8

1ETH Zurich & Paul Scherrer Institute, Laboratory for Neutron Scattering, ETHZ & PSI, WHGA/347, Villigen-PSI, Villigen, CH-5234, Switzerland, 2Laboratory for Solid State Physics, ETH Hoenggerberg, CH-8093 Zurich, Switzerland, 3Department of Physics, Clark University, Worcester, Massachusetts 01610, USA, 4Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II), D-85747 Garching, Germany, 5Institut fuer Festkoerperphysik, TU Dresden, D-01062 Dresden, Germany, 6Institut Laue-Langevin, BP 156, F-38042 Grenoble, France, 7Carlson School of Chemistry and Biochemistry, Clark University, Worcester, Massachusetts 01610, USA, E-mail: nikolay.tsyrulin@psi.ch

Two-dimensional (2D) quantum antiferromagnets are of great fundamental interest because the presence of quantum fluctuations can lead to novel quantum excitations and novel ground states. Only little is known about the effects of applied magnetic fields on 2D square-lattice antiferromagnets. Using neutron scattering technique, we studied the magnetic excitation spectrum of the $S=1/2$ 2D square-lattice Heisenberg antiferromagnet Cu(pz)$_2$(ClO$_4$)$_2$ [1] up to one third of saturation field. Inelastic neutron scattering measurements performed at zero field show $11.5(7)\%$ dispersion along the antiferromagnetic zone-boundary and the existence of a magnetic continuum for wave-vectors around $(\pi;0)$. Relatively small magnetic fields applied perpendicular to the square-lattice plane suppress the continuum and at $H=14.9T$ the dispersion along the zone-boundary is inversely with respect to zero field with a minimum at $(\pi/2;\pi/2)$. Due to quantum correlations magnetic fields strongly renormalize the entire excitation spectrum from factor $Z_c=1.19(2)$ at zero field to $Z_c=0.99(2)$ at $H=14.9T$. Renormalized spin wave theory describes the field dependence of the gap energy at the antiferromagnetic zone centre $(\pi;\pi)$ with a small exchange anisotropy, but the dispersion of a well defined mode at high fields deviates from spin-wave theory, indicating the presence of quantum fluctuations.

P07.10.59

Studies on some manganese-containing single-molecule magnets

Siau Gek Ang1, Xiu-bing Li2, Bai-wang Sun3

1National University of Singapore, Chemistry, Department of Chemistry, 3 Science Drive 3, Singapore, Singapore, 117543, Singapore, 2Department of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, P.R. China, E-mail: chmangsg@nus.edu.sg

The synthesis, crystal structure, and magnetic properties of $[\text{Mn}_2O_2(OOCCMe_3)_2(bpy)_2](\mu_2-O_2)$. The magnetic susceptibility shows a sharp rise in the μ_2-O(CCMe$_3$) space group and contain a known $[\text{Mn}^{II}_{4}(\mu_2-O_2)]^{2+}$ core that can be considered as two edge-sharing, triangular $[\text{Mn}_3O_2]$ units. Peripheral ligation is by six μ_2-O(CCMe$_3$) and two terminal bipy phen groups to yield a complex with imposed C_2 symmetry. The magnetic properties of Complexes 1 and 2 have been studied by direct current (DC) and alternating current (AC) magnetic susceptibility techniques.

Keywords: single-molecule magnets, manganese complexes, magnetic susceptibility studies

P07.10.60

Slow relaxation of the magnetization in rationally designed single chain magnets

Lapo Bogani1,2, Kevin Bernot3, Roberta Sessoli2, Claudio Sangregori2, Dante Gatteschi2

1Institut Néel, CNRS, 25, Av. des Martyrs, Grenoble, Isere, 38042, France, 2La.M.M. and INSTM research Unit, Department of Chemistry, V. della Lustracca 3, Sesto Fiorentino (FI), Italy, E-mail: lapo.bogani@hotmail.com

After the intense research activity in the field of slow dynamics of the magnetization in molecular clusters (SMMs) and the bistability is limited for assembling or decomposition of coupled structures [4]. Strategy II: Stepwise assembling of potentially thermally-accessible crystalline Mn(III) complexes. Magnetic properties or ground spin states may be changed for mononuclear one [5]. It is partly valid for chiral Schif base complexes of cyanide-bridged Mn-M'-Mn clusters [6], but the degree of distortion is small in cocrystals (Figure) [7]. References