
and organic vapors accompanying the expansion of channel in its crystal structure.[1] To investigate the possibility of single crystal of tris-ethylenediamine metal complexes as ionic single-crystal hosts for vapor adsorption, a series of adsorbency of single crystals of $[M^{III}(en)_3]Cl_3$ (M = Co, Cr, Rh, Ir) were studied. All complexes have channels in their crystal structures, which dynamically and reversibly change their size with vapor adsorption, and show similar vapor adsorbency like the adsorption behavior of $[Co(en)_3]Cl_3.[2]$

[1] S. Takamizawa,
T. Akatsuka, T.
Ueda, Angew.
Chem. Int. Ed.,
47(9), 1689-1692
(2008).
[2] S. Takamizawa,
M. Kohbara, T.
Akatsuka, R.
Miyake, submitted

Keywords: gas-solid inclusion reaction, solid-state strucutral changes, ionic crystals

P08.04.12

Acta Cryst. (2008). A64, C422

Synthesis and properties of dioxalatocuprates (II) and ruthenium (III) aminocomplexes salts

Evgeny Yu. Filatov^{1,2}, Svetlana A. Martynova¹, Sergey V. Korenev^{1,2}, Yuriy V. Shubin^{1,2}

¹Nikolaev institute of inorganic chemistry, Siberian Branch of Academia of Science, Lavrentev ave. 3, Novosibirsk, Novosibirsk region, 630090, Russia, ²Novosibirsk State University, Pirogova str. 2, Novosibirsk, Novosibirsk region, 630090, Russia, E-mail:decan@che.nsk.su

Double complex salts (DCS) are of great interest as precursors of bimetallic solid solutions and intermetallics. Solid solutions based on platinum group metals have high catalytic activity. Thermolysis such single-source molecular precursors under low temperature (400 $^{\circ}$ C) allows to prepare bemetallic powders with definite ratio of components and particles size about 5-10 nm. This work related to synthesis of complexes contained simultaneously ruthenium and copper and study of their metallic thermolysis products. In the field of this work the following DCS were synthesized: $[Ru(NH_3)_5Cl][Cu(C_2O_4)_2] \cdot H_2O(I), [RuNO(NH_3)_4OH][Cu(C_2O_4)_2] \cdot$ 1.5H₂O (II). Obtained DCS were characterized by IR-spectroscopy, element analysis, XRD and X-ray single crystal analysis. This is crystallographic data: (I) a = 7.6277(5), b = 13.1052(8), c =14.9640(7) Å, $\dot{b} = 97.852(2)$, V = 1481.81(15) Å³, $P2_1/n$, Z = 4, Dx = 2.148 g/cm^3 ; (II) a = 7.1121(2), b = 10.3941(3), c = 10.6288(3) Å, $\alpha = 97.0340(10), \beta = 107.6150(10), \gamma = 92.8600(10), V = 740.10(4)$ Å³, P-1, Z = 1, Dx = 2.276 g/cm³. Structures are build of discrete [Ru(NH₃)₅Cl]²⁺, [RuNO(NH₃)₄OH]²⁺, [RuNO(NH₃)₅]²⁺ cations and [Cu(C₂O₄)₂]²⁻ anions. Thermolysis of obtained salts under inert and reduction atmosphere was studied. The XRD investigation of thermolysis products was carried out. Decomposition of salts under helium atmosphere begin at 140 - 150°C, occur in 2 stages and finish at 520°C (I), at 300°C (II). Thermolysis products are Ru, RuO₂, CuCl, Cu₂O. Decomposition of complexes under hydrogen atmosphere also studied. Product is Ru_{0.8}Cu_{0.2}. This work was supported by the RFBR grants 07-03-01038-a, 08-03-00603-a.

Keywords: double complex salt, ruthenium, copper

P08.04.13

Acta Cryst. (2008). A64, C422

Synthesis and crystallographic study in the PbO-Bi₂O₃-V₂O₅ System:Pb_{3-x}Bi_{2/3x}V₂O₈

Prangya Parimita Sahoo¹, Etienne Gaudin², Jacques Darriet³, Tayur N Guru Row⁴

¹Indian Institute of Science, Solid State and Structural Chemistry Unit, C. V. Raman Avenue, Bangalore, Karnataka, 560012, India, ²Institut de Chimie de la matiere condensee de Bordeaux,33608 Pessac Cedex, France., ³Institut de Chimie de la matiere condensee de Bordeaux,33608 Pessac Cedex, France., ⁴Indian Institute of Science, Solid State and Structural Chemistry Unit, Bangalore, Karnataka, 560012, India, E-mail : prangya@sscu.iisc.ernet.in

PbO-Bi₂O₃-V₂O₅ System is of current interest owing to its use to generate novel ion conducting materials [1]. Pb₃V₂O₈ displays two structural phase transitions at 373 and 273 K [2]. The first order phase transitions have been studied both by neutron and X- ray powder diffraction [3]. The high temperature γ phase of Pb₃V₂O₈ adopts the palmerite structure [4, 5]. In this context, polycrystalline samples in the series $Pb_{3-x}Bi_{2/3x}V_2O_8$ (x = 0.2 to 1.5) have been synthesized by solid-state route. The compositions x = 0.2 to 0.7 form a solid solution with a structure similar to γ form of Pb₃V₂O₈, as confirmed by powder diffraction studies while $Pb_3BiV_3O_{12}$ (x = 1.0) was isolated from a mixture of two phases. Single crystals of both phases representing two new vanadates were grown by melt-cool technique. $Pb_{2.5}Bi_{1/3}V_2O_8$ (x = 0.5) and $Pb_3BiV_3O_{12}$ (x = 1.0), have been analysed by single-crystal X-ray diffraction. Pb_{2.5}Bi_{1/3}V₂O₈ crystallizes in a trigonal system, space group R-3m, with a = 5.755 (6) Å, c =20.317(4) Å, V = 582.74(1) Å³ and Z = 3 whereas Pb₃BiV₃O₁₂ is cubic (eulytite), space group I-43d, with a = 10.749 (2) Å, V =1241.9 (1) Å³ and Z = 4. It is of interest to note that this study for the first time describes the structural motifs formed by a eulytite vanadate.

- [1] Boivin , J. C. & Mairesse, G. Chem. Mater., 1998, 10 , 2870.
- [2] Isupov et.al, Sov. Phys. Solid State, 1965, 24(5), 844.
- [3] Kiat et.al, J. Solid State Chem, 1991, 91, 339.
- [4] Durif, A. Acta Cryst., 1959, 12, 420.
- [5] Susse, P. & Buerger, M. J. Z. Krist., 1970, 131,161.

Keywords: synthesis, solid solution, powder and single crystal diffraction

P08.04.14

Acta Cryst. (2008). A64, C422-423

Photoinduced surface relief grating formation using single crystals of azobenzene derivatives

Hideyuki Nakano

Osaka University, Department of Applied Chemistry, Faculty of Engineering, Yamadaoka, Suita, Osaka, 565-0871, Japan, E-mail : nakano@chem.eng.osaka-u.ac.jp

Surface relief grating (SRG) formation by irradiation of amorphous films of azobenzene-containing polymers with two coherent laser beams has recently received a great deal of attention in view of both academic interest and potential technological applications. We have been performing studies of the photoinduced SRG formation using azobenzene-based photochromic amorphous molecular materials. Photoinduced SRG formation is believed to take place by mass transport induced by *trans* – *cis* and *cis* – *trans* isomerizations of azobenzene chromophore. Several models for the mechanism of the SRG formation have been proposed; however, the details have not been clear yet. In contrast to amorphous materials, it is of interest to