Raman spectroscopy has been used to provide solution structural information on metalloporphyrins for many years. Recent solid state work [1] found that the totally symmetric ν_4 high spin iron(III) oxidation state marker band in malaria pigment is enhanced when using a 780-nm excitation line. Closely related ν_4 band with 780-nm excitation. The current work presents comparison of supramolecular features of closely related metalloporphyrin complexes that exhibit the ν_4 enhancement and those that do not in exhibit attempt to demonstrate correlation of structural features and then on ν_4 band. [FeCl(C$_6$H$_8$N$_2$O$_3$)$_2$] \cdot Mr = 824.11, orthorhombic, Pnca, $a = 22.5275$ (7), $b = 15.0824$ (6), $c = 23.1602$ (9) \AA, $V = 7869.1 (5) \AA^3$, $Z = 8$, D$_{cak}$ = 1.391 Mg m$^{-3}$, Mo Kα, $\mu = 0.503$ mm$^{-1}$, F(000) = 3416, T = 123 K, R = 0.153 for 6887 unique observed reflections.

Keywords: iron porphyrin, Raman spectrum, malaria pigment

P08.14.128

Relationship between nitrogen conformation and spectral properties in nitric oxide prodrugs

Jeffrey R Deschamps, Harinath Chakrapani, Joseph E. Saavedra, Larry K. Keefer

1Naval Research Laboratory, Code 6030, 4555 Overlook Ave., Washington, DC, 20375, USA, 2Laboratory of Comparative Carcinogenesis, National Cancer Institute at Frederick, Frederick, MD, 21702, USA, 3SAIC-Frederick, National Cancer Institute at Frederick, Frederick, MD, 21702, USA, E-mail: deschamps@nrl.navy.mil

In continuing the synthesis and characterization of nitric oxide prodrugs of structure $\text{R}_2\text{N} = \text{N} = \text{O}$ spectral differences with different R_2N groups have been noted. These differences are particularly pronounced when comparing pyrrolidine derivatives and other $\text{R}_2\text{N} = \text{N} = \text{O}$ compounds. We postulate that differences in the absorbance maximum reflect an extension of the diazeniumdiolate chromophore through electronic interaction with the R_2N nitrogen in the case of the pyrrolidine derivatives that does not occur with the diethylamine, dimethylamine, or 6-membered heterocyclic analogues. This electronic overlap should be reflected in structural changes such as increasing planarity of the R_2N system, decreasing N-OR' bond length, and increasing single bond character of the $\text{R}_2\text{N} - \text{N} = \text{O} - \text{OR}'$ molecule’s N=N linkage. In this study we provide evidence supporting this hypothesis by comparing structural parameters determined by x-ray crystallographic analysis of diazeniumdiolates.

Keywords: structure analysis, UV effects, drug design