Toluidine blue O (TB), one of popular cationic dyes, has been used in biological and medical fields as an important cytological probe because of its metachromatic effects. Its metachromasy has been considered to be caused by the formation of a certain dye aggregate. It is very important to understand the relationship between the metachromatic spectral change and the aggregates, in order to obtain structural information of biomolecules from metachromatic staining. But regarding TB, structural data of both TB itself and TB-biomolecule complexes have not been reported. We then approached the structure analysis of TB. TB was crystallized as blue needles by means of solvent diffusion method using ion-exchanged water and acetone as good and poor solvents, respectively. However, the thickness of the needles was unsuitable for X-ray structure analysis. On the other hand, thick crystals were obtained after exchanging the chloride ion to hexafluorophosphate ion. Its crystal analysis is now under investigation.

Keywords: crystal structure of organic compounds, dye compounds, molecular biology

P08.14.156

Structure of new organic semiconductors with cobalt bis(dicarbollide) bromine anion

Olena Kazheva1, Grigoriy Alexandrov2, Oleg Dyachenko1

1Institute of Problems of Chemical Physics of RAS, 1, Semenov av., Chernogolovka, Moscow Region, 142432, Russia, 2N.S.Kurnakov Institute of General and Inorganic Chemistry of RAS, Moscow, Russia, E-mail:koh@icp.ac.ru

New molecular semiconductors on the base of 8,8′-dibromo cobalt bis(dicarbollide) anion, (BEDT-TTF)2[8,8′-Br2-3,3′-Co(1,2-C2B9H10)2] (1), (BEDT-TTF)[8,8′-Br3-3,3′-Co(1,2-C2B9H10)2] (2) and (BMDT-TTF)4[8,8′-Br2-3,3′-Co(1,2-C2B9H10)3] (3) were synthesized and investigated. Recently we have started investigation of the structure-property relationship in a series of fulvalene salts of cobalt bis(dicarbollide) anion and its derivatives [1,2]. These counter anions are particularly interesting owing to their enormous variability. The cobalt bis(dicarbollide) anion [3,3′-Co(1,2-C2B9H10)]2 offers several distinct ways of chemical modification: (1) substitution at carbon atoms; (2) substitution at boron atoms in upper belt of the dicarbollide ligand; and (3) substitution at boron atoms in lower belt of the dicarbollide ligand. As a result, molecules with a wide variety of properties in almost unlimited variations can be prepared. In this contribution, we present synthesis and structure of the first electroconducting salts of the dibromo derivative of cobalt bis(dicarbollide) anion [8,8′-Br2-3,3′-Co(1,2-C2B9H10)2]. Crystal structure of (BEDT-TTF)2[8,8′-Br2-3,3′-Co(1,2-C2B9H10)]2 (1) is formed by the BEDT-TTF radical cations in general positions of the unit cell, and the [8,8′-Br2-3,3′-Co(1,2-C2B9H10)]2 anions in special centrosymmetric positions (Fig. 1). Fig. 1. Atomic designations in (BEDT-TTF)2[8,8′-Br2-3,3′-Co(1,2-C2B9H10)]2 (1)

Keywords: organic conductors, X-ray analysis, materials properties

P08.14.157

Optical activity of N-benzoylglycine crystals

Kentaro Kato, Tomoya Taniguchi, Masanari Otsuka, Hideko Koshiba

Ehime University, Department of Material Science and Biotechnology, Graduate School of Science and Engineering, 3,Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan, E-mail:u843015x@mails.ehime-u.ac.jp

Every chiral organic crystal has inherent optical activity. The sign and the magnitude of the optical activity of an organic crystal should reflect the molecular structure and the packing arrangement because the freedom of molecules is severely restricted in the crystal lattice. We report here the optical rotatory power of chiral crystals self-assembled from achiral N-benzoylglycine determined by HAUP (high accuracy universal polarimeter) method. The magnitude of rotatory powers was 10 to 100 times larger than that for ordinary organic crystals. It revealed that the helically arranged aromatic p electrons as well as the helical ionic and hydrogen bond networks in the crystal contributed to the enhancement of the magnitude of these rotations.

Keywords: optical activity, N-benzoylglycine, chiral crystal

Keywords: photoluminescence, gallium oxalatophosphate, organic-inorganic hybrid material

P08.14.159

Acta Cryst. (2008). A64, C467

New 1D, 2D and 3D azido Mn, Cd and Zn complexes with magnetic and non-linear optical properties

Vratislav Langer¹, Morys A. Abu-Youssef²
¹Chalmers University of Technology, Dept. of Chemical and Biological Engineering, Environmental Inorganic Chemistry, Gothenburg, Sweden, SE-412 96, Sweden, ²Department of Chemistry, Faculty of Science, Alexandria University, P.O. Box 426 Ibrahimia, 21321 Alexandria, Egypt, E-mail: r@chalmers.se

Supramolecular chemistry is concerned with weak interactions that occur between molecules, i.e. all non-covalent bonds, as well as weak coordination bonds. Such interactions are important in biological, magnetic and optical systems. Here we describe coordination compounds used as building blocks in crystal engineering. We present a number of supramolecular 1-D, 2-D and 3-D complexes of Mn³⁺, Cd²⁺ and Zn²⁺ with the azido bridge as a networking agent. The versatility of the azide ligand affords chains with Mn³⁺ in which ferrimagnetic behavior is clearly observed for 1-D and 2-D Mn³⁺ systems with quinoline derivatives [Mn(H₂O)(μ-N₃)(N)(quinaz)₂] and [Mn(μ-N₃)(quinaz)₂], (quinaz = quinazoline) and [Mn(μ-N₃)(pyrazid)₂] and [Mn(3-ampy)(μ-N₃)(N)(H₂O)₂], (pyrazid = pyrazineamide and 3-ampy = 3-aminopyrazine) and [Zn(bipy)(N₃)₂], (bipy = 2,2'-bipyridine).

Keywords: supramolecular structures, metal-organic compounds, structure-function relationships in solids

P08.14.160

Acta Cryst. (2008). A64, C467

Motion of inclusion gas molecules in clathrate hydrate observed by neutron powder diffraction

Naoki Iga¹, Tomitsugu Taguchi¹, Hiroshi Fukazawa¹, Hiroki Yamauchi¹, Yoshinobu Ishii¹, Wataru Utsumi¹
¹Chalmers University of Technology, Dept. of Chemical and Biological Engineering, Environmental Inorganic Chemistry, Gothenburg, Sweden, SE-412 96, Sweden, ²Department of Chemistry, Faculty of Science, Alexandria University, P.O. Box 426 Ibrahimia, 21321 Alexandria, Egypt, E-mail: igawa.naoki@jaea.go.jp

Methane hydrate has attracted great interest as an energy resource after the discovery in the deep seabed as huge reservoirs of methane gas. Moreover, carbon dioxide hydrate is paid much attention as a storage medium of carbon dioxide gas to prevent the global warming. These clathrate hydrates are inclusion compounds in which the hydrophobic guest molecules exist in a host ice- framework called ‘cage’. Their structural stabilities are deeply related with the physical properties of inclusion gases. In this study, we carried out neutron powder diffraction measurements of carbon dioxide and Xe deuterohydrates using the HRPD at JRR-3, JAEA. The diffraction data were analyzed by the combination of the Rietveld and the maximum entropy method (MEM) to clarify the motion of inclusion gases. The motions of carbon dioxide and Xe molecules in the small cages show the different manner from those in the large cages. These motions have small temperature dependences, in contrast to the methane hydrate case where the motion of methane molecules in the large cage shows large temperature dependence. Details on the motions of gas molecules in the hydrates are discussed.

Keywords: clathrate hydrate, neutron powder diffraction, MEM

P08.14.161

Acta Cryst. (2008). A64, C467-468

Possible non-centrosymmetric structure of vaterite type yttrium orthoborate

Facultad de Física - Universidad de la Laguna, Fisica Basica, Astrofísico Francisco Sanchez, La Laguna, Santa Cruz de Tenerife, 38204, Spain, E-mail: vimasafa@ull.es

Yttrium and Lanthanide Orthoborates are promising candidates to be used in new-generation flat-panel display phosphors technologies. Despite extensive research on the Eu²⁺ luminescence, in these compounds, fundamental questions remain unanswered regarding the relation between the vaterite type structure and the resulting Eu²⁺ spectral features. High-resolution luminescence spectra do not permit to unambiguously distinguish between the alternatives of having either two or three cation sites in the structures, which are compatible with the crystal structures solved by single-crystal X-ray and neutron powder diffraction, respectively. Three samples: YBO₃, Y₀.₈₅Eu₀.₁₅BO₃ and Y₀.₈₅Yb₀.₁₅BO₃ were prepared by solid-state reaction. We have undertaken an investigation, combining optical spectroscopy, second harmonic generation, X-ray powder diffraction and first-principles calculations, to correlate the optical features with the crystalline structure. Some remarkable results have been achieved: 1) all the samples show similar SHG intensities than the KDP and these increases with the doping concentration; 2) from Rietveld refinement and first-principles calculations we can distinguish between the hexagonal, orthorhombic and monoclinic symmetry. Moreover, doped samples are better refined in the acentric C₂ space group, thus, we can correlate the number of sites of Yttrium and point symmetry with the results obtained from Yb³⁺ and Eu²⁺ optical spectra. Complementary first-principles total-energy calculations also are shedding light in the structural analysis of the systems [1].