P10.02.10

Acta Cryst. (2008). A64, C493

Crystal structure analysis of Rb_{0.5}Tl_{0.5}H₂PO₄ at room temperature by neutron diffraction

<u>In-Hwan Oh</u>^{1,3}, Stefan Mattauch², Gernot Heger³, Cheol Eui Lee¹ ¹BK21 Initiative for Global Leaders in Physics, Korea University, Department of Physics, Asan Science Building, Room 626, Anam-dong Seongbuk-Gu, Seoul, Seoul, 136-701, Korea (S), ²Institut fuer Festkoerperforschung, Juelich Centre for Neutron Science, Forschungszentrum Juelich, D-52425, Juelich, Germany, ³Institut fuer Kristallographie, RWTH Aachen, Jaegerstr.17-19, D-52056, Aachen, Germany, E-mail:oh1905@korea.ac.kr

TlH₂PO₄(TDP) and RbH₂PO₄(RDP) belong to the large family of $A(H,D)_2PO_4$ - type (A = K⁺,Rb⁺,Cs⁺,Tl⁺ etc) with remarkable ferroic properties and multiple structural phase transitions related to the ordering of the H,D atoms in short O-(H,D)-O hydrogen bonds of about 2.5Å. Although Tl⁺ and Rb⁺ have similar ionic radii(1.47Å), the crystal structures of RDP and TDP at room temperature are basically different. Whereas RDP exhibits a three-dimensional network of hydrogen bonded PO₄-groups with tetragonal symmetry (space group *I*-42*d*), the monoclinic TDP-structure (space group: $P12_1/a1$) is characterized by a two-dimensional network; both structures show disordered H-distributions[1,2]. In this work, we present a crystal structure analysis of (Rb_{0.5}Tl_{0.5})H₂PO₄ mixed crystal by neutron single crystal diffraction. Large, highly perfect crystals were grown from aqueous solution. At room temperature data collections were performed on the four-circle diffractometer SV28/1 with a wavelength of $\lambda = 0.8724$ Å at the DIDO-reactor, FZ-Jülich, Germany. (Rb_{0.5}Tl_{0.5})H₂PO₄ crystallizes in the monoclinic space group $P12_1/a1$ with lattice parameters a=14.36(2)Å,b=4.524(3)Å, c=6.50(1)Å, and $\beta=91.8(1)^{\circ}$. Its crystal structure is isotypic to that of TDP showing H-disordering in the O-(H,D)-O hydrogen bonds. This result corresponds to NQR-investigations [3], where it was pointed out that the mixed crystals (Rb_{1-x}Tl_x)H₂PO₄ show no phase transition at low temperatures for $0.2 \le x \le 0.8$. It may be very interesting to study this solid-solution more systematically in order to understand the role of the lone-pair electrons of the Tl⁺ ions.

[1] S. Mattauch et al., Cryst. Res. Technol. 39,1027(2004) [2]I. H Oh et al., Acta Cryst.B62,719(2006) [3]J.Seliger & V. Zagar, PRB 52,1070(1995)

Keywords: hydrogen bond, neutron diffraction, crystal structure analysis

P10.02.11

Acta Cryst. (2008). A64, C493

Structural chemistry of (oxo-)nitridosilicate host lattices for rare-earth doped phosphors

<u>Oliver Oeckler</u>, Juliane Kechele, Cora Hecht, Cordula Braun, Wolfgang Schnick

LMU Munich, Department of Chemistry and Biochemistry, Butenandtstr. 5 - 13 (D), Munich, 81377, Germany, E-mail:oliver.oeckler@gmx.de

Owing to their suitability as host lattices for rare-earth doped phosphors in light-emitting diodes, (oxo-)nitridosilicates like $M_2Si_5N_8$ and $MSi_2O_2N_2$ (M= Ca, Sr, Ba) have received remarkable attention [1]. Their crystal chemistry is very different from that of silicate minerals in many respects. As N atoms can connect three Si atoms, framework nitridosilicates can exhibit very high degrees of condensation. Their structures and properties strongly depend on reaction conditions and slight variations in composition. For example, at high pressure there is a reconstructive transition of $Ca_2Si_5N_8$ to a new related phase with a sharper emission band of doping Eu²⁺. The framework of Ba₂AlSi₅N₉ consists of highly condensed layers of SiN₃O tetrahedra that are interconnected by less condensed silicate rings, whereas similar layers are directly interconnected in $(Ca,Sr)_2(Si,Al)_8(N,O)_{13}$. As SiN₄ and AlN₄ tetrahedra can share edges, unusual structural motifs become possible, such as rods of edge-sharing tetrahedra embedded in a framework in the compound SrAlSi₄N₇ [2]. Traces of oxygen lead to SrAlSi_{6.5}N₇O, a 6-ring layer silicate that, in contrast to all layered oxosilicates, contains both edge and vertex sharing tetrahedra. Most layered structures, including MSi₂O₂N₂, exhibit numerous real structure effects [3], which have been investigated in detail by means of high-resolution electron microscopy (HRTEM) complemented by the analysis of X-ray data including diffuse scattering and powder methods.

 Mueller-Mach, R., Mueller, G., Krames, M. R., Höppe, H. A, Stadler, F., Schnick, W., Juestel, T., Schmidt, P., Phys. Stat. Sol. A 2005, 202, 1727. [2] Stadler, F., Ph. D. thesis, LMU Munich, 2006.
Occkler, O., Stadler, F., Rosenthal, T., Schnick, W., Solid State Sci. 2007, 9, 205.

Keywords: silicate crystal structures, disordered systems, materials structure and characterization

P10.02.12

Acta Cryst. (2008). A64, C493

Crystal chemistry of natural and synthetic Pb(II) oxyhalides

Oleg I. Siidra¹, Sergey V. Krivovichev¹, Wulf Depmeier²

¹Saint-Petersburg State University, Geological Faculty, Crystallography, University emb. 7/9 199034, Saint-Petersburg, Saint-Petersburg, 199034, Russia, ²Universitaet zu Kiel, Institut fuer Geowissenschaften, Olshausenstrasse 40, 24118, Kiel, Germany, E-mail:siidra@mail.ru

In the course of our ongoing research in Pb(II) oxyhalide structural chemistry, 18 new lead oxyhalides have been prepared by high temperature solid-state reactions and hydrothermal syntheses. The structures of these compounds have been solved by direct methods. The following compositions were obtained: Pb_{2+x}OCl_{2+2x} (1), $Pb_3O_2Br_2(2)$, $Pb_3O_2Cl_{0.19}Br_{1.81}(3)$, $Pb_3O_2Cl_{0.46}Br_{1.54}(4)$, $Pb_{3}O_{2}Cl_{0.52}Br_{1.48}(5), Pb_{3}O_{2}Cl_{0.81}Br_{1.19}(6), Pb_{3}O_{2}Cl_{1.03}Br_{0.97}(7),$ $Pb_{3}O_{2}Cl_{1.09}Br_{0.91}(8)$, $Pb_{3}O_{2}Cl_{1.41}Br_{0.59}(9)$, $Pb_{3}O_{2}Cl_{1.61}Br_{0.39}(10)$, Pb₃O₂Cl_{1.84}Br_{0.16}(11), Pb₃O₂Cl₂(12), Pb₇O₄(OH)₄Br₂(13), Pb₃₁O₂₂Br₁₀Cl₈(14), Pb₁₃O₁₀Cl₆(15), Pb₆LaO₇Br(16), Pb₆LaO₇Cl(17), Pb₂₄O₂₁I₆(18). The following mineral crystal structures were solved and refined: mereheadite Pb47O24(OH)13Cl25(CO3)(BO3)2 (19), unnamed mineral Pb7MgO4(OH)5Cl3 (20), chloroxiphite Pb₃O₂Cu(OH)₂Cl₂ (21). All of these compounds and minerals are based upon OPb4 oxocentered tetrahedra. In all studied Pb(II) oxyhalides with additional O atoms, lone electron pairs on the Pb^{2+} cations are stereochemically active. The compound 1 contains $[OPb_2]^{2+}$ chains of trans-edge-sharing OPb_4 tetrahedra. The compounds 2-13, 20, 21 contain double $[O_2Pb_3]^{2+}$ chains. The structures of compounds 16-17 are based upon [O₇Pb₆La]⁺ chains of mixed-metal OPbnLa4-n tetrahedra. The topology of the chains can be described as being based upon an arrangement of eight tetrahedra that all share the same central La atom. The unique $[O_{21}Pb_{24}]^{6+}$ complex chains form the structure of 18. The layer in the structure of 19 can be derived from the [OPb] tetrahedral layer that has been observed in the structure of PbO. The $[O_{22}Pb_{30}]^{16+}$ layer in the structure of 14 is remarkable of its exceptional topological complexity. Exceptional $[O_{10} P b_{13}]^{6+}$ framework was found in the structure of 15.

Keywords: lead, oxocentered tetrahedra, crystal structure