unique structure, size and shape-dependent phenomena. Therefore, systematic directions for synthetic methods and an understanding of the mechanisms by which the structure, size and shape of the nanostructural material can be controlled are of particular interest. In this work, we report the controllable synthesis of ferric oxide nanostructural materials utilizing a simple hydrothermal method. We also examine the roles of parameters critical to the size and shape guiding processes and properties of the synthesized nanostructural materials. In a typical synthesis, added the ferric solution and additive to NaOH solution with various concentrations under vigorous magnetic stirring, and then transfer the mixture to a stainless steel autoclave. The products were characterized by XRD, SEM, TEM, ED, IR, TG-DTA, and SQUID. The XRD patterns of the as-prepared products were shown that, all of the peaks can be easily indexed as the rhombohedral α -Fe₂O₃. The SEM images indicate all products are composed of a large number of individual nanoparticles. The structure, size and shape of nanostructures could be control by adjusting hydrothermal conditions.

Keywords: hydrothermal synthesis, ferric oxide, nanostructural materials

P11.01.01

Acta Cryst. (2008). A64, C507

Growth and characterization of Nd_{1.85}Ce_{0.15}CuO₄ samples

Anita Guarino^{1,2}, Rosalba Fittipaldi², Angela Nigro^{1,2}, Francesco Offi³, Sandro Pace^{1,2}, Giancarlo Panaccione⁴,

Alfonso Romano^{1,2}, Antonio Vecchione²

¹Università degli studi di Salerno, Physics, Via S. Allende, 1, Baronissi, Salerno, 84081, Italy, ²CN R INFM Laboratorio Regionale SUPERMAT, Via S. Allende 1, Baronissi, Salerno, 84081, Italy, ³CNISM e Dipartimento di Fisica Universita; Roma Tre, Via della Vasca Navale 84, Roma 00146 Italy, ⁴INFM, TASC Laboratory in Area Science Park, S. S. 14, Km 163.5, 34012 Trieste Italy, E-mail:guarino@sa.infn.it

Recently several attempts have been made of looking at the physics of electron-doped and hole-doped cuprates under a unifying point of view, possibly elucidating the general mechanism for high-T_c superconductivity [1]. The fabrication method of Nd_{1.85}Ce_{0.15}CuO₄ bulk samples, based on a systematic control of the microstructural and phase homogeneity, is of fundamental importance in order to obtain sintered targets and precursors for high quality thin films and single crystals fabrication, respectively. Structural and electrical characterization of samples fabricated in different ways (bulk, films and single crystals) as a function of growth conditions and thermal treatments will be presented. We investigated morphology and composition by Scanning Electron Microscopy, Energy Dispersive Spectroscopy and Wavelength Dispersive Spectroscopy to verify the right stoichiometry, the presence of spurious elements, clusters and undesired phases. High resolution x-ray diffraction allowed to measure the structural parameters and to detect possible different phases and grain orientations. Standard four-probe resistance versus temperature measurements have been performed to study the transport properties of all the samples. Moreover, x-ray excited photoemission experiments performed at the European Synchrotron Radiation Facility have been used for obtaining information on the electronic configuration of the superconducting state as well as in the normal state [2,3].

Bibliografia:

- [1] A. Damascelli et al Rev. Mod. Phys. 75, 473 (2003).
- [2] G. Panaccione et al., Phys. Rev. B 77, 125133 (2008).
- [3] S. Uthayakumar et al., in preparation.

Keywords: superconducting oxides, X-ray techniques, resistivity

P11.01.02

Acta Cryst. (2008). A64, C507

Crystal structure and superconducting properties of monoclinic perovskite BaPb_{0.7-x}Sb_xBi_{0.3}O₃

Antoni Winiarski, Jan Heimann

University of Silesia, Solid State Physics Department, Institute of Physics, Uniwersytecka 4, Katowice, Wojewodztwo Slaskie, 40-007, Poland, E-mail:antoni.winiarski@us.edu.pl

Starting materials BaCO₃, PbO₂, Bi₂O₃ and Sb₂O₅ were pressed into pellets and sintered in slowly flowing oxygen at the temperature of 1123 K for 15 hours. Polycrystalline BaPb_{0.7-x}Sb_xBi_{0.3}O₃ pellets were powdered. X-ray diffraction analysis was performed at room temperature using Siemens D5000 X-ray Powder Diffractometer with K α radiation. The space group was determined to be I2/m (No. 12), which was the same as for BaPbO₃ [1]. The lattice parameters were calculated using Powder Cell for Windows program [2]. The upper limit of lead replacement by antimony in monoclinic BaPb_{0.7}- $_{\rm x}$ Sb_xBi_{0.3}O₃ was found to be x = 0.4. The lattice parameters a, c and the volume of the unit cell decrease with increasing x parameter up to x = 0.2. Then increasing the *a* and *c* lattice parameters and the volume of the unit cell in the x range 0.2 < x < 0.4 is observed. The b lattice parameter decreases with increasing x parameter in the whole examined range. The monoclinic angle beta corresponds to the angle between the cubic directions [110] and [1-11]. Electrical resistivity measurements were performed to examine superconducting properties of the samples. Maximum transition temperature T_c equal to 13.2 was reached for the x = 0.2. The minimum of the unit cell volume in the BaPb_{0.7-x}Sb_xBi_{0.3}O₃ system is also observed for the x =0.2. Oxygen deficiency leads to a loss of superconducting properties and change in the space group. Semiconductor BaPb_{0.7-x}Sb_xBi_{0.3}O_{3-d} compounds have space group I4/mcm at room temperature.

[1] Marx, D. T., Radaelli P. G., Jorgensen J. D., Hitterman R. L., Hinks D. G, Shiyou Pei, and Dabrowski B., (1992) Phys. Rev. B 46, 1144-1156

[2] Kraus, W., Nolze, G. (1996) J. Appl. Cryst. 29, 301-303.

Keywords: superconducting oxides, perovskites, resistivity

P11.01.03

Acta Cryst. (2008). A64, C507-508

Role of O atom modulation in the self-doped spinladder compound Sr₁₄Cu₂₄O₄₁

Yoshito Gotoh

National Institute of Advanced Industrial Science and Technology (AIST), Research Institute of Instrumentation Frontier, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8565, Japan, E-mail:y-gotoh@aist.go.jp

The Sr_{14-x}(Ca, La, Y)_xCu₂₄O₄₁ series are so-called spin-ladder compounds with two-legged Cu₂O₃ ladder and one-dimensional CuO₂ chain. Especially, Sr_{14-x}Ca_xCu₂₄O₄₁ series form a self-doped system, because the formal valence of Cu is +2.25. The ternary Sr₁₄Cu₂₄O₄₁ as the parent material of Sr_{14-x}(Ca, La, Y)_xCu₂₄O₄₁ forms incommensurate composite crystal structure with the CuO₂ subsystem and the Cu₂O₃ subsystem. After modulated structure analysis with the BVS calculations of Sr₁₄Cu₂₄O₄₁, it has become apparent that most of the holes are located in the CuO₂ chain. The valence of Cu atoms in the ladder and the chain are well