controlled by the O atom modulation in the CuO₂. We have further investigated the temperature dependence of the atomic modulations in Sr₁₄Cu₂₄O₄₁, particularly in the CuO₂ chain in which the spin-gap behavior accompanied by the formation of the spin-dimerized state is realized at low temperature. By single-crystal x-ray-diffraction method, we have confirmed that superspace group of the modulated structure remains unchanged from room temperature to 150K. The hole distribution has been considered on the basis of the changes of lattice constants, the atomic modulation and the interatomic distances between Cu in the Cu₂O₃ and O atom in the CuO₂. It is indicated that the small amount of holes doped in the Cu2O3 have been backtransferred to the CuO₂ and that almost all of the holes are localized in the CuO₂ at low temperature. Moreover, the possible hole-ordered structure with the Zhang-Rice singlet in the CuO₂ are mainly due to the O atom modulation in the CuO₂ and the ZR-singlet site with rectangular CuO₄ unit is possible in the CuO₂, which is analogous to the local CuO₄ coordination in the CuO₂ plane of high-T_c cuprates.

Keywords: superconductor oxides, composite crystals, incommensurate modulated structures

P11.01.04

Acta Cryst. (2008). A64, C508

Structural study on the rattling phenomena in the β -pyrochlore oxides and filled skutterudites

Junichi Yamaura, Zenji Hiroi

University of Tokyo, ISSP, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8581, Japan, E-mail:jyamaura@issp.u-tokyo.ac.jp

 β -pyrochlore oxides and filled skutterudites exhibit a wide variety of physical properties; superconductivity, heavy fermion, valence fluctuation, non-Fermi liquid behavior. The alkali ions in the β -pyrochlore oxides and the rare earth ions in filled skutterudites are located inside the oversized cages, and these ions are rattling heavily with large thermal displacements. In order to elucidate the relation between the rattling and the physical properties, we carried out X-ray diffraction measurements on single crystals of β -KOs₂O₆ and NdOs₄Sb₁₂ using a CCD area detector and a curved imaging plate. It is known that the two compounds exhibit the largest rattling among each series. The values of the atomic displacement parameter U_{eq} are estimated at $U_{eq}=0.0735(8)$ for K in β -KOs₂O₆ (Fd-3m) and U_{eq}=0.0558(1) for Nd in NdOs₄Sb₁₂ (Im-3) at 300 K, which are significantly large in comparison with the other atoms. It is found that the electron density of the K atom in β -KOs₂O₆ is not spherical but extended considerably along the <111> direction in spite of the high point symmetry of the site (-43m), giving evidence for a large anharmonic vibration of the K atom. In contrast, the Nd atom in NdOs₄Sb₁₂ shows isotropic electron density, consistent with the m-3 site symmetry. Thus, it is concluded that the anharmonicity, which is the key issue for the rattling, is more pronounced in β -KOs₂O₆. In addition, on the first-order transition for β -KOs₂O₆ at T_p = 7.5 K below the superconducting transition at $T_c = 9.6$ K, we found a clear stepwise change in the X-ray intensity of some selected reflections, which must be relevant to some sort of changes in the rattling of the K atom.

Keywords: structural studies, superconducting materials, heavy fermions

P11.01.05

Acta Cryst. (2008). A64, C508

Microstructure and superconductivity in polycrystalline boron-doped diamonds

<u>Natalia A. Dubrovinskaia</u>¹, Richard Wirth², Joachim Wosnitza³, Thomas Papageorgiou³, Hans F. Braun⁴, Nobuyoshi Miyajima⁵, Leonid S. Dubrovinsky⁵

¹University of Heidelberg, Im Neuenheimer Feld 236,, Heidelberg, D, 69120, Germany, ²GeoForschungsZentrum Potsdam, Experimental Geochemistry and Mineral Physics, 14473 Potsdam, Germany, ³Hochfeld-Magnetlabor Dresden (HLD), Forschungszentrum Dresden-Rossendorf, D-01314 Dresden, Germany, ⁴Physikalisches Institut, University of Bayreuth, D-95440 Bayreuth, Germany, ⁵Bayerisches Geoinstitut, University of Bayreuth, D-95440 Bayreuth, Germany, E-mail : Natalia. Dubrovinskaia@min.uni-heidelberg.de

The discovery of superconductivity in polycrystalline borondoped diamond (BDD) synthesized under high pressure and high temperatures (Ekimov et al. (2004) Superconductivity in diamond. Nature 428: 542) has raised a number of questions on the origin of the superconducting state. It was suggested that the heavy boron doping of diamond eventually leads to superconductivity. To justify such statements a more detailed information on the microstructure of the composite materials and on the exact boron content in the diamond grains is needed. For that we utilized high-resolution transmission electron microscopy as well as electron energy loss spectroscopy. For the studied superconducting BDD samples synthesized at high pressures and high temperatures the diamond grain sizes are about 1-2 microns with a boron content between 0.2(2) and 0.5(1) at.%. The grains are separated by 10-20 nm thick layers and triangular-shaped pockets of predominantly (at least 95 at.%) amorphous boron. Our results render superconductivity caused by the heavy boron doping in diamond highly unlikely.

Keywords: superconducting materials, microstructure, TEM characterization

P11.01.06

Acta Cryst. (2008). A64, C508-509

Superconductivity and charge-density wave in ring- or Moebius-shaped NbSe₃ and TaS₃ single crystals

Masahiko Hayashi¹, Hiromichi Ebisawa², Kazuhiro Kuboki³

¹Akita University, Faculty of Education and Human Studies, 1-1 Tegatagakuen-machi, Akita, Akita, 010-8502, Japan, ²Tohoku University, 41 Kawauchi, Aoba-ku, Sendai 980-8576, Japan, ³Kobe University, Kobe 657-8501, Japan, E-mail:m-hayashi@ed.akita-u.ac.jp

NbSe₃ and TaS₃ single crystals of ring- or Moebius-shape have been fabricated by Tanda et al. and an intriguing possibility to investigate superconductivity or charge-density wave (CDW) in these topological spaces has been opened. In this paper, we predict several new phenomena in these systems based on both phenomenological Ginzburg-Landau theory and microscopic Bardeen-Cooper-Shrieffer theory. First we study the physical properties of superconductivity in a Moebius ring, which is obtained by applying pressure or doping atoms to NbSe₃. Most interesting phenomenon appears when a magnetic field is applied to this system: an ordinary Little-Parks oscillation, which is an oscillation of transition temperature as a function of magnetic flux (F) threading the ring, is modified especially when F is close to a half-odd-integer times a superconducting magnetic flux quantum, and novel superconducting states appear which have a gap node along the center line of the Moebius ring. This kind of state has never been achieved in other