Synthetic tin-selenium cylindrite, with the empirical formula Sn$_{0.25}$Sb$_{0.5}$Fe$_{0.25}$S$_{2}$ based on electron-microprobe data, has a triclinic crystal structure composed of two alternating layers, both with a pronounced one-dimensional modulation, and with a non-commensurate layer match in two dimensions. The pseudotetragonal (Q) layer is a two-atomic planes thick MeSe$_2$ layer with lattice parameters $a = 3.06(2)$ Å, $b = 6.004(1)$ Å, and the layer-stacking vector $c = 12.238(1)$ Å, $a = 87.98(4)^\circ$, $b = 83.14(3)$ $^\circ$, and $c = 90.01(4)^\circ$. The pseudohexagonal (H) layer is a single-octahedral MeSe$_2$ layer with $a = 3.831(1)$ Å, $b = 6.580(3)$ Å, $c = 12.151(5)$ Å, $a = 87.79(4)^\circ$, $b = 90.59(3)^\circ$, and $c = 89.99(3)^\circ$; the a and b vectors of the two subsystems are parallel, the c vectors diverge. The transversal wave-like modulation has the wave-normal parallel to b, so that the modulation vector $q = 0.0001a^* + 0.1921(4)b^*$ - 0.0119(3) c^* in terms of the pseudohexagonal subsystem. Superspace structure refinement in the superspace group $P1121/2121/2000$, $(0,0,0,0,1/2)$, $(1/2,1/2,0,0,0)$, $(0,0,0,0,1/2)$, $(1,1,2,0,0,1/2)$ in a five-dimensional superspace, and based on 2128 observed reflections, resulted in $R1=0.038$ for all reflections. The cation-anion distances in the Q layer vary between 2.63 and 3.30 Å, indicating that the cations present are primarily Sn$^2^+$ (and Sb$^5^+$) whereas those in the H layer lie between 2.67 and 2.72 Å and correspond to Sn$^4^+$ with admixture of Fe. The shortest cation-anion distance across the interlayer space is 3.24 Å. Relations between layer match and the modulation vector, divergence of layer stackings of the two components, and reasons for the modulation and for the pronounced disorder of the Q component will be illustrated and discussed in detail. In its structural principles, although not in numerical values, the Sn-Se cylindrite corresponds fully to the natural Pb-Sn-S cylindrite described previously by Makovicky, and Makovicky and Hyde.

Keywords: non-commensurate layer structure, layer-misfit structure, modulated structure

P11.06.27

Crystallization behaviour of sol-gel derived cordierite precursors

Emilija Tkalcic1, Jasminka Popovicić2, Biserka Grzeta3, Hrvoje Ivanovic4

1Faculty of Chemical Engineering and Technology, University of Zagreb, Marulić trg 20, Zagreb, HR-10000, Croatia (Hrvatska), 2Division of Materials Physics, Rudjer Boskovic Institute, Bijenička cesta 54, P.O. Box 180, Zagreb, HR-10002, Croatia (Hrvatska), E-mail: etkalcic@pierre.fkit.hr

Cordierite (Mg$_4$Al$_2$Si$_5$O$_{18}$) ceramics is technologically important material due to its low thermal expansion, small dielectric constant, and high chemical and thermal stability [1]. It occurs in two stable forms: in the high-temperature hexagonal alpha form, stable above 1450°C, [2] and in the orthorhombic beta form, stable below 1450°C [3]. Preparation roots of cordierite involve solid-state reactions, liquid phase sintering, glass-ceramic route or sol-gel synthesis. The interest in sol-gel synthesis lately increased because it enables excellent control of chemical composition and reduces the temperature of ceramic processing. Two sol-gel derived cordierite precursors were prepared using tetaoxysilane, Mg(NO$_3$)$_2$:6H$_2$O and Al-sec-butoxide (for precursor designated as BC) or Al(NO$_3$)$_3$:9H$_2$O (for precursor designated as NC). Detailed studies of crystallization behaviour of those precursors were performed by DSC and in-situ high temperature XRD from RT up to 1165°C. The Rietveld method was performed for quantitative phase analysis of the crystallization products and for the refinement of their crystal structures.

Crystallization started at about 800°C for both precursors, but their crystallization sequences were rather different. For precursor BC crystallization involved the appearance of stuffed derivative of beta-quartz, alpha-cordierite, mullite and enstatite, while for precursor NC it involved the formation of stuffed derivative of beta-quartz, sapphirehime, mullite, alpha-cordierite and beta-cristobalite.

Keywords: materials chemistry, sol-gel method, X-ray powder diffraction

P11.06.29

Study of guest ion site in Hollandite-type K$_{1.58}$Ga$_{1.38}$Sn$_{1.2}$O$_{16}$ from 293K to 93K

Kenjiro Fujimoto1,2, Emmanuel Wenger3, Massimo Nespolo3, Claude Lecomte*4

1Tokyo University of Science, Department of Pure and Applied Chemistry, 2641, Noda, Chiba, 278-8510, Japan, 2LCM3B, UMR - CNRS 7036,