state conversion. Ordering of the spin states is manifested in the corresponding superstructure reflections; these can be traced in a diffraction experiment as a function of external stimuli. By mapping the reciprocal space with an area detector and synchrotron light, we have studied the temperature dependence of the superstructure reflections for NdBaCoO$_3$ and TbBaCoO$_3$. We have found that above the metal-insulator transition there are two different Co ions in the asymmetric unit, one sitting in a pyramidal and one in an octahedral environment. Below the transition temperature there are four structurally different Co ions. This observation agrees with the “spin blockade” mechanism suggested for the metal-insulator transition in cobaltites. We also present results of structural analyzes illustrating how the corresponding powder diffraction measurements could easily overlook the correct structure. A symmetry analysis bracketing the observed phase transitions within the context of Landau theory is also given.

Keywords: cobaltites, spin transition, spin ordering

P11.11.39

Acta Cryst. (2008). A64, C519

Investigation of the crystal symmetry of BiMnO$_3$: Electron diffraction study

Tadahiro Yokosawa1, Alexei A Belik2, Toru Asaka1, Koji Kimoto1, Eiji Takayama-Muromachi2, Yoshio Matsui1

1National Institute for Materials Science, Advanced Nano Characterization Center, Namiki 1-1, Tsukuba, Ibaraki prefecture, 305-0044, Japan, 2National Institute for Materials Science (NIMS), Advanced Nano Materials Laboratory, Namiki 1-1, Tsukuba, Ibaraki prefecture, 305-0044, Japan, E-mail: YOKOSAWA.Tadahiro@nims.go.jp

BiMnO$_3$ has been considered as a multiferroic material due to the ferroelectric and ferromagnetic properties. The crystal symmetry is, however, controversial today. We investigated the crystal symmetry of BiMnO$_3$ by Convergent-Beam and Selected-Area Electron Diffraction (CBED and SAED, respectively). CBED, which was used in order to discriminate the crystal axes of BiMnO$_3$, showed that BiMnO$_3$ belongs to space group C2/c. In the [010] SAED pattern, however, the very weak but sharp h0l (l=2n+1) reflections were observed indicating the noncentrosymmetric long-range ordered structure (C2) [1]. This implies that the weak reflections had quite little influence on the CBED patterns [2]. The h0l (l=2n+1) reflections could not be detected in structurally related BiScO$_3$ and BiCrO$_3$ indicating centrosymmetric C2/c, respectively [1]. This strongly suggests that the noncentrosymmetric long-range ordered structure (C2) of BiMnO$_3$ is attributed not only to Bi$^{13+}$ ions with lone electron pair but also to Mn$^{4+}$ ions, that is, to correlation between Bi$^{13+}$ and Mn$^{4+}$ ions.

Keywords: magnetic structures, perovskite structures, neutron powder diffraction

P11.11.41

Acta Cryst. (2008). A64, C519–C520

Coupling of Tb- and Mn-magnetic orders in multiferroic TbMnO$_3$

Oleksandr Prokhnenko1, Ralf Feyerherm1, Maxim Mostovoy2, Nadir Aliouane3, Esther Dudzik4, Anja U.B. Wolter4, Andrey Maljuk1, Dimitri N. Argyriou1

1Hahn Meitner Institute, Glienickerstr. 100, Berlin, 14109, Germany, 2Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, Netherlands, E-mail: prokhenko@hmi.de

While ferroelectricity and magnetism are chemically incompatible, it has recently been shown that inversion and time-reversal symmetry can be broken simultaneously if magnetic spins order in a cycloidal arrangement as in RMnO$_3$. It has been also shown that although the magnetic ordering of Mn-spins drives multiferroicity, R-ions strongly modulate it and thus significantly influence multiferroic properties. Irrespective of the mechanism that drives multiferroic behavior, the magnetic coupling between R- and Mn-spins needs to be understood in order to arrive at a detailed and quantitative model of multiferroics. Here we report on diffraction measurements which demonstrate that the Tb- and Mn- magnetic ordering in multiferroic TbMnO$_3$ remain