distribution maps obtained from the maximum entropy method (MEM) describe that 13.4% of protons exist at inter-layer space. Proton diffusion constants were estimated as 1.9(1) \times 10^{-6} \text{ m/s at 393 K and 2.1(3) \times 10^{-6} m/s at 413 K respectively. The structural change corresponds to a rotational mode of SeO}_4 tetrahedra, which is led from the group theoretical analysis from R3m to C2/c. A diffusive spectrum was observed around 0 meV at the L-point (0.5 2 0) above \text{TC} as an over dumped phonon mode. The rotational mode of SeO}_4 tetrahedra drives the improper ferroelastic phase transition, and assists the disconnection and reconstruction of hydrogen bonds in the high temperature phase.

Keywords: neutron diffraction elastic and inelastic, proton conductivity, phase transitions

P11.12.60

Acta Cryst. (2008). A64, C526

X-ray diffuse scattering and a local structure of (CH_3)_4NCdCl_3 (TMCC) and related compounds

Marek Wolicyz, Marek Pasiack, Adam Pietraszko

Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okolina 2, Wroclaw, -50-420, Poland, E-mail: m.wolicyz@int.pan.wroc.pl

A local structure of TMCC has been determined by configurational-bias reverse Monte Carlo method basing on X-ray diffuse scattering data. Two phases have been analysed and refined: phase I at 293 K, P6/m space group, \(a = 0.9139(1) \text{ nm, } c = 0.6723(1) \text{ nm, and phase } \Gamma^1 \text{ at 410 K, P6/mmc space group, } a = 0.9235(1) \text{ nm, } c = 0.6742(1) \text{ nm. A model dividing CdCl}_6 \text{ octahedra chains into elementary bricks has been implemented in order to take into account coupling between orientation of TMA molecules and local deformations of the octahedra chains. The resulting structures contain the subchains of CdCl}_6 \text{ octahedra shifted longitudinally away from their average positions. Their lengths show the Poisson-like distribution with an average value of about 6 unit cells. X-ray diffuse scattering effects observed on the h00 plane require the existence of the transverse subchain displacements. Additional transversal correlation between longitudinal shifts of the subchains is needed to explain weak modulation effects and diffuse streaks observed on the planes perpendicular to e^*.

Keywords: disordered systems, diffuse scattering, reverse Monte Carlo

P11.12.61

Acta Cryst. (2008). A64, C526

Magnetoelectric effects in BiMn_2O_5: A high-resolution synchrotron x-ray diffraction study

Eduardo Granado^1,2, Marcos S Eleotero^1, Ali F Garcia-Flores^1, Jose A Souza^3, Eugene I Golovenchits^4, V I Sanina^4

^1Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin, Caixa Postal 6165, Campinas, Sao Paulo, 13083-970, Brazil, ^2Laboratorio Nacional de Luz Sincrotron, Caixa Postal 6192, Campinas, Sao Paulo, 13083-970, Brazil, ^3Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318, Sao Paulo, Sao Paulo, 05315-970, Brazil, ^4Ioffe Physical-Technical Institute of RAS, 194021, St. Petersburg, Russia, E-mail: egranado@if.unicamp.br

Multiferroic materials with coexisting (anti)ferromagnetism and ferroelectricity have attracted renewed attention, due to the interesting physics involved as well as relevant potential applications in spintronics. A fairly strong coupling amongst ferroelectric and magnetic order parameters may occur as a result of exchange striction effects in magnetic structures lacking an inversion center. Below the magnetic ordering temperature, slight atomic displacements take place and strengthen the satisfied (frustrated) interactions, breaking the inversion symmetry of the structure and leading to ferroelectricity. In this work, synchrotron X-ray diffraction measurements were performed on single crystallline and powder samples of BiMn_2O_5. A linear temperature dependence of the unit cell volume was found between TN=38 K and 100 K, suggesting that a low-energy lattice excitation may be responsible for the lattice expansion in this temperature range. Between T^* \leq T_N, all lattice parameters showed incipient magnetoelectric effects, due to short-range spin correlations. An anisotropic strain along the a-direction was also observed below T^*. Below TN, a relatively large contraction of the a-parameter following the square of the average sublattice magnetization of Mn was found, indicating that a second-order spin Hamiltonian accounts for the magnetic interactions along this direction. Polycrystalline samples grown by distinct routes and with nearly homogeneous crystal structure above TN presented structural phase coexistence below TN, indicating a close competition amongst distinct magnetostructural states in this compound.

Keywords: BiMn_2O_5, multiferroics, high-resolution x-ray powder diffraction

P11.12.62

A strategy to prepare multiferroic materials

Jimmy Ting, Brendan Kennedy

The University of Sydney, School of Chemistry, School of Chemistry, F11, The University of Sydney, Camperdown NSW, Australia, 2006, Sydney, New South Wales, 2006, Australia, E-mail: J.Ting@chem.usyd.edu.au

Manganese doped bismuth titanate is a potential multiferroic material, displaying both ferroelectricity and ferromagnetism. This is because of the layered nature of the Aurivillius structure which involves the stacking of octahedral perovskite blocks in between layers of bismuth oxide. An n=3 Aurivillius structure, with 3 layers of octahedral units in the perovskite block, are of special interest to solid state chemists. This is because the n=3 arrangement, provides simultaneously, a locally symmetric environment for the B-cations in the middle octahedral layer of the perovskite block and also a structurally distorted environment for the B-cations in the top and bottom octahedral layers of the perovskite block. The stability in maintaining this structural distortion is due to the 6s2 lone pair of electrons from the bismuth in the bismuth oxide layer. This unique structure can accommodate the usually conflicting requirements of ferroelectric and ferromagnetic properties to coexist. The objective would be to incorporate a layer of magnetic manganese cations within the middle octahedral layer, which benefits from the symmetrical environment, and integrate titanium into the top and bottom octahedral layers. This would introduce ferromagnetic properties to bismuth titanate, which is already a well-known ferroelectric material. Synchrotron X-ray diffraction has already been used to determine the structure of some of these compounds and together with magnetic property measurements, it is a step forward in uncovering the relationship between the observed ferroelectric and ferromagnetic properties of these compounds and their atomic structure.

Keywords: materials structure and characterisation, X-ray
powder diffraction, structure-properties relationship

P11.12.63

Acta Cryst. (2008). A64, C527

Discovery of polarization flop and ferrielectric character of multiiferroic RMn$_2$O$_5$

Mamoru Fukunaga1, Keisuke Nishihata1, Hiroyuki Kimura1, Yukio Noda1, Kay Kohn1

1Tohoku University, Institute of Multidisciplinary Research for Advanced Materials, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan.

Rare-earth (R) manganese oxides of the form RMn$_2$O$_5$ are known as multiiferroic materials which exhibit colossal magnetoelectric effects because of magnetic frustration and dielectric properties strongly coupling with magnetic ordering. However, the origin of the ferroelectricity of RMn$_2$O$_5$ is not yet clear. We have studied the relationship between dielectric properties and magnetic ordering of RMn$_2$O$_5$, especially by simultaneous measurements of the electric polarization and permittivity under neutron diffraction, and discovered several new facts. It is believed that the ferroelectricity of RMn$_2$O$_5$ appears only along the c-axis. But we discovered that the polarization of TmMn$_2$O$_5$ flops from the tetragonal to the monoclinic symmetry along the c-axis about 5 K, which is attributed to a magnetic phase transition in an incommensurate magnetic phase. According to a structure analysis, RMn$_2$O$_5$ may be ferrielectric. Actually both ferroelectric and antiferroelectric hysteresis loops of ErMn$_2$O$_5$ are observed as the figure at 35.4 K, in a commensurate magnetic phase. These loops can be obtained by a Sawyer-Tower circuit with a new technique, the double-wave method.

Keywords: ferroelectrics, magnetic frustration, neutron diffraction

P11.12.64

Acta Cryst. (2008). A64, C527

Structure and magnetic property of one-dim. chain complex: MII(μ-bpt)(μ-COOC$_5$H$_4$N)$_2$(H$_2$O) (M=Mn, Fe)

Szu-Miao Chen1, Chou-Fu Sheu1, Yu-Sheng Wen2, Yi-Hong Liu1, Gen-Hiang Lee1, Yu Wang1

1National Taiwan University, Chemistry, No. 1, Sec. 4, Roosevelt Road, Taipei, Taiwan(R.O.C.), Taipei, Taiwan, 10617, Taiwan.

The one dimensional chain complex, MII(μ-bpt)(μ-COOC$_5$H$_4$N)$_2$(H$_2$O) (M=Mn, Fe), with the metal centers connected each other with bpt and isonicotinic acid forms an infinite chain along a screw axis 4. It is synthesized by solvo-thermal synthesis and the structure is characterized by single crystal x-ray diffraction. The complex is crystallized in tetragonal space group $I 4_1/a$ with cell parameter of $a=21.5910(2)$, $c=15.2330(3)$ Å. It is iso-structure for both metal ions. Fe(II) is octahedrally coordinated by four nitrogen of bpt and two oxygen of isonicotinic acid, [FeNO$_2$]. The bond lengths of Fe-N are 2.331(1) Å, 2.130(1) Å, 2.233(1) Å, 2.126(1) Å and of Fe-O are 2.057(1) Å, 2.093(1) Å at 300 K; which are typical bond lengths of FeII at its high spin state. However, this Fe chain complex displays distinct ferromagnetic interaction between the FeII centers. The hydrogen bonds between water molecules and the ligands may play important role on the inter-chain interactions. On the contrary, the Mn(II) complex shows typical paramagnetic character with antiferromagnetic interaction at low temperature, even the structure is exactly the same as that of Fe chain complex. The detail structure of the chain complexes and the comparison on the magnetic property of the two metal chain complexes will be presented.

Keywords: inorganic materials, one-dimensional structures, magnetic properties

P11.12.65

Acta Cryst. (2008). A64, C527

Structural change of cordierite by substitution Ni for Mg bringing high Q on millimeterwave ceramics

Hitoshi Ohsato, Isao Kagomiya, Mio Terada, Ken’ichi Kakimoto

Nagoya Institute of Technology, Material Science and Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi, 466-8555, Japan, E-mail: ohsato.n@nitech.ac.jp

Cordierite (Mg$_2$Al$_2$Si$_2$O$_8$) is a candidate for millimeterwave dielectrics because of the low dielectric constant of 6.19. This study has been focused on the affects of substitution Ni for Mg in octahedron. In the case of octahedron substitution, the quality factor Q of the Ni-substituted analogy with single phase was improved from 39900 to 90600 GHz. The origin of improvement of Q comes from changing to the high symmetry which is from orthorhombic to hexagonal. Here, cordierite with orthorhombic system Cccm (No.66) transforms to indiarite with hexagonal system $P6/mcc$ (No.192). It is confirmed based on the crystal structure obtained by Rietveld method that configuration of SiAl$_2$O$_8$ ring changes to hexagonal ring from distorted ring according to the substitution Ni for Mg. The volumes and covalencies of SiO$_4$ and AlO$_4$ tetrahedra also change to same size according the substitution. The crystal structure tends to become higher symmetry hexagonal ring with accompanying Si-Al disordering. In this case, contribution of high symmetry for Q might be greater than that of ordering.

P11.12.66

On-line symmetry-mode analysis of any ferroic structure

J. Manuel Perez-Mato, D. Orobengoa, M. I. Aroyo

Universidad del Pais Vasco, Fisica de la Materia Condensada, Apdo. 644, BILBAO, (Bizkaia), 48080, Spain, E-mail: j.m.perez-mato@ehu.es

We report the addition to the Bilbao Crystallographic Server (www.cryst.ehu.es) of a new tool that can perform the symmetry