measuring the variations of lattice constants of iso-strained substrate layers at different penetration depths. This method is now applied to investigate the strain field of quantum dots nano-structures of FeSi2/Si. Choosing one secondary diffracted beam along the interface (parallel to the surface of the substrate) between the quantum dots and the Si substrate, the diffraction images of the secondary diffraction, recorded on a charge coupled device (CCD), provide the information of the interfacial structures. The three-dimensional strain and a theoretical calculation of X-ray scattering from quantum dots at the Bragg-surface diffraction geometry based on the dynamical theory will be also reported.

Keywords: FeSi2, interface, diffraction

P12.01.12


Oxygen-induced D03-sublattice disorder at the Fe₆Al(110) surface

Vedran Vonk, Claus Ellinger, Navid Khoshnati, Alina Vlad, Andreas Stierle, Helmut Dosch
Max Planck Institute for Metals Research, Dorsch Department, Heisenbergstrasse 3, Stuttgart, Baden-Wuertemberg, 70569, Germany, E-mail: vonk@mf.mpg.de

Alloys of Fe and Al form promising materials for high-temperature light-weight replacements of steel [1]. However, for their use in real applications, the understanding and control of the oxidation behaviour is crucial [2]. Here, the atomic structures of the clean and oxidized Fe₆Al(110) surface are studied by in situ surface X-ray diffraction using synchrotron radiation. The results for the clean surface demonstrate that the topmost atomic layer exhibits in-plane B2 order, with a D03 bulk beneath it. Upon oxidation at 10⁻⁶ mbar of molecular oxygen at a temperature of 573 K, the D03 long-range order in the near-surface region disappears completely, without affecting the surface roughness nor the crystallinity. At the same time, a smooth 8.4(3) Å AA Y thin aluminium-oxide layer is formed on the surface, as concluded by complementary X-ray reflectivity and Auger Electron Spectroscopy measurements. These results can be understood by preferential surface segregation in combination with a high affinity of Al for oxygen. These findings are very important for real applications of iron-aluminides, since their physical properties depend strongly on the composition and the resulting ordering. The present result of oxygen-induced Al-depletion is expected to result in a stronger and less brittle selvedge than the bulk beneath, which has important implications for the processing of these materials.


Keywords: oxidation, binary metal surfaces, surface X-ray diffraction

P12.04.14


Total reflection of X-rays due to diffraction

Jun Kawai, Shinsuke Kunimura
Kyoto University, Department of Materials Science and Engineering, Sakyo-ku, Kyoto, Kyoto, 606-8501, Japan, E-mail: jun.kawai@materials.kyoto-u.ac.jp

Total reflection of X-rays due to diffraction. In a popular X-ray diffraction book [1], the diffraction and the reflection are treated as completely different physical phenomena: (1) The diffracted X-rays by the crystal are formed by scattering from all the atoms irradiated by the incident X-rays, but visible light is only reflected by the surface thin layer. (2) Monochromatic X-ray diffraction by a crystal takes place at the Bragg angle, but the visible light reflection takes place at any angle. (3) The reflection by a mirror is about 100 %, and the intensity does not decrease due to the reflection, but the diffracted X-ray intensity is extremely weaker than the incident X-rays. However, I would like to claim that the X-ray diffraction and the X-ray total reflection, which is similar to the visible light specular reflection, are both diffraction phenomena. Takahashi and Nakatani have already claimed this at 1995 [2]. The consequence of the above discussion will be: (1) the total reflection intensity profile is the Darwin profile, which has been pointed out by Ref[2]; (2) the critical angle of X-ray total reflection can be interpreted from the dynamical theory of X-ray diffraction. The fundamental of X-ray total reflection is important for the practical application of total reflection X-ray fluorescence for sub nanogram analysis [3]. Some applications of the X-ray specular reflection are also presented.

References
[1] Y. Waseda and E. Matsubara, Xsen Kozo Kaiseki, Uchida-

P12.02.13


PTRF-XAFS investigations on the interaction between metal and the oxide support

Kiyotaka Asakura, Yuichiro Koike, Wang-Jae Chun, Masaharu Nomura
1Hokkaido University, Catalysis Research Center, kita 21-10, Sapporo, Hokkaido, 001-0021, Japan, 2Photon Factory, Institute of Materials Structure Science, Oho 1-1 Tsukuba, 305-0801, Japan, 3International