depending on the experimental condition [1-4]. The deficient line is black and the excess line white on photograph. The deficient-excess unindexed line is black on one side and white on the other side of the line. In the present work for the first time the contrast reversal along the unindexed line is obtained. The specimens were single crystalline silicon films prepared by chemical etching of bulky crystals. The transmission electron diffraction patterns were obtained in an EG-100M electron diffraction camera at an accelerating voltage of 100kV with the primary electron beam almost parallel to [111] axis. In the obtained Kikuchi patterns the unindexed line runs along the middle line of the Kikuchi band. The deficient unindexed line in the vicinity of the strong and spot reflections changes the contrast and transforms into excess line. The experimental conditions of unindexed line contrast reversal are founded. It is shown that the contrast is reversed when unindexed line passes through or in vicinity of an intense spot reflection. The contrast reversal of unindexed line is explained within the framework of the Kikuchi patterns formation mechanism with due regard for the double Kikuchi diffraction [5].

Keywords: Kikuchi lines, electron diffraction, reflection

P19.03.06

Electron nanocrystallography: Advancements toward automated structure solution

Joseph T McKeown, John Spence

The synthesis of new nanocrystalline structures demands new rapid methods of solving their crystal structures. Our goal is real-time structure solution at the electron microscope, based on automated acquisition of three-dimensional electron diffraction data with subsequent phasing of the data set and presentation of a unit-cell potential map that displays atomic positions and even species. To achieve this we must consider: 1) translation of the specimen during automated tilting; 2) automated recognition of zone-axis orientations; 3) multiple-scattering artifacts; 4) indexing methods; 5) absolute intensity scaling of the data; 6) scaling of data collected at different orientations; and 7) the phase problem. Initially, we have focused on issues 3) through 7) following manual acquisition of three-dimensional electron diffraction data from a known test crystal (the MgAl2O4 spinel structure). Data was collected by two techniques, both of which minimize multiple-scattering artifacts: precession electron diffraction (PED) and kinematic convergent beam electron diffraction (CBED) using an in-column Omega energy filter. After indexing and scaling, experimental structure-factor magnitudes were obtained from the patterns. These provide input to the charge-flipping algorithm [1], which works well with relatively poor-quality electron diffraction data or powder diffraction data [2], to solve the phase problem and obtain the correct crystal structure. Solutions for PED and kinematic CBED data are presented for comparison with each other and with simulations. Further development requires automated, scripted control of specimen tilt and data acquisition.

Keywords: electron diffraction, crystal structure analysis, electron microscopy and diffraction

P19.03.07

Contribution of electron precession to the identification of a new zirconium hydride

Jean-Paul Morniroli1, Zhao Zhao1,2, Alexandre Legris1, Martine Blat-Vrieix2

1Laboratoire de Metallurgie Physique et Genie des Materiaux, UMR CNRS 8517, USTL and ENSCL, Bat. C6, Cite Scientifique, Villeneuve d’Ascq, Nord, 59655, France, 2EDF R&D, Centre des Renardières, Eculelles, 77818 Moret-sur-Loing Cedex, France, E-mail: Jean-Paul. Morniroli@univ-lille1.fr

A new metastable zirconium hydride designated as zeta-hydride, was identified and characterized in Zircaloy-4 alloys submitted to hydrogen cathodic charging or autoclave corrosion tests. Its crystal structure was obtained by combining TEM experiments and theoretical calculations. Using the electron precession microdiffraction technique, it was possible to identify slight differences of intensity between some weak extra reflections which proved that the highest “ideal” symmetry (the symmetry which takes into account both the position and the intensity of the reflections on a pattern) of this hydride is 3m. This symmetry is in agreement with a hexagonal lattice (with lattice parameters a=0.33 nm and c=1.029 nm) and with the Laue class -3m belonging to the trigonal crystal system. Then, the ZrH stoichiometric formula of the hydride was inferred from observations of plasmon peaks on EELS patterns. Finally, a structural model of the hydride, with space group P3m1, was deduced from ab-initio structure calculations and its validity was confirmed by subsequent dynamical simulations of the electron diffraction patterns.

Keywords: electron crystallography, precession, structure solution

P19.03.08

A study of structure properties of ZnS nano-crystals using electron crystallography

Jin-Gyu Kim1, Seong-Je Park1, Hyun-Min Park2, Youn-Joong Kim1

1Korea Basic Science Institute, 52 Eoeun-dong, Yuseong-gu, Daejeon, 305-340, Korea, 2Korea Research Institute of Standards and Science, 209 Gajeong-ro, Yuseong-gu, Daejeon, 305-340, Korea, E-mail: jjinta@kbsi.re.kr

We have characterized the structure properties of two types of ZnS nano-crystals by electron crystallography. For determination of their initial structures, we have performed XRD analysis for ZnS crystals of 5 nm and 10 nm which were synthesized by same route. Their real crystallite sizes were about 5.9 nm and 8.1 nm and their crystal systems were hexagonal and cubic, respectively. Their quantitative structures, however, could not be determined because of their weak diffraction intensities. To overcome the intensity problem, the structure of ZnS nano-crystals was resolved by using EF-PED (Energy-Filtered Precession Electron Diffraction) and HREM (High Resolution Electron Microscopy) utilizing a HVEM (High
Voltage Electron Microscope). EF-PED data resulted in the basic crystallographic information of ZnS nano-crystals: P63mc, $a = 3.83\AA$ and $c = 6.26\AA$; $P-43m$, $a = 5.41\AA$, respectively. As a result of HREM analysis, their crystallite shapes were turned out to be nano-rods and nano-particles, respectively and the nano-rod structure was elongated to the [001] direction. The size and shape dependency related to crystal structures of ZnS nano-crystals has been discussed.

Keywords: electron crystallography, energy-filtered precession electron diffraction, ZnS

P19.03.10

Acta Cryst. (2008). A64, C605

Microstructural characterization of YPO$_4$: Li by transmission electron microscopy

Lucia Diaz-Barriga1, Ivonne Rosales2, Lauro Bucio3

1ESIQIE/ Instituto Politecnico Nacional, Metralugia, Av.JPN S/N colonia Lindavista, MEXICO DF, DF, 07370, Mexico, 2Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Apdo. Postal 20-364, 01000 Mexico DF, Mexico, E-mail: luchell@yahoo.com

Xenotime YPO$_4$ is an yttrium phosphate with a tetragonal structure and can be doped by ions of diverse diameters in order to control its electrical conductivity. The purpose of this work is to present an study about the microstructural characterization of YPO$_4$ by electron transmission microscopy when this yttrium phosphate is doped with lithium. Samples were obtained by the following solid state reaction: \(Y_2O_3 + (\text{NH}_4)_2\text{HPO}_4 \rightarrow \text{YPO}_4 \cdot x\text{Li}\). Powder samples were studied in a JEOl 100 CX with point resolution of 2.7\,\text{angstrom}.

Keywords: xenotime, orthorhombic yttrium phosphate, electron microscopy

P19.04.11

Determination of chiral indices of carbon nanotubes using electron diffraction pattern

Yohei Sato1, Kenji Tsuda1, Masami Terauchi1, Yahachi Saito2

1Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan, E-mail:y-sato@tagen.tohoku.ac.jp

Carbon nanotubes (CNTs) show physical properties of a metal or a semiconductor depending on these structures. Thus, it is important to investigate the structure of a single CNT expressed by a chiral index (n, m) [1]. Transmission electron microscopy is a powerful tool to investigate structures of single CNTs. In the present study, the chiral indices are determined by using electron diffraction patterns obtained from single double-walled CNTs (DWCNTs) and single single-walled CNTs (SWCNTs). Electron diffraction patterns were obtained from 200 nm areas containing a single DWCNT or SWCNT by using a transmission electron microscope of JEM2010 at an accelerating voltage of 100 kV. Intensities of the diffraction patterns were recorded on imaging plates. Determination process of chiral indices is as follows. 1. The chiral angles and diameters of the CNT are estimated from the diffraction patterns. 2. The chiral indices (n, m) of the CNT are estimated from the angles and the diameters. 3. Diffraction patterns of chiral indices (n, m) were simulated using a simulation program “MBFIT” [2, 3]. 4. The simulated diffraction patterns are compared with the experimental patterns. 5. Chiral indices (n, m) were determined from the best agreement between the experimental and the simulated patterns. The determination of chiral indices enables us to calculate the joint densities of states of the CNTs and to compare electron energy-loss spectra of the CNTs with joint density of states of the CNTs calculated from chiral indices (n, m).

References:

C605