High-resolution crystallographic or NMR techniques provide information on the precise 3D structure of proteins and bound water molecules. Knowledge of hydration sites of proteins is essential for many reasons, including understanding manifold interactions as crucial prerequisites for flexibility, dynamics and functionality, and the construction of tailor-made proteins, e.g. in context with drug-design projects.

A critical inspection of anhydrous and hydrated protein models obtained by crystallography with models derived from other techniques and calculation approaches allows comparing the quality of the models under analysis. Among the outstanding problems identified by a critical assessment are amount and position of the water molecules. A variety of techniques were examined and both models and molecular parameters were analyzed: Conventional and ab initio modeling approaches signify satisfactory agreement between crystal- and SAXS-based protein models, provided hydration contributions and other precautions are taken into account [1]. Recourse to crystallographic data also allows hydrodynamic modeling; in the case of multibead assemblies novel modeling refinements (efficient bead reductions) have to be adopted [2, 3]. The creation of hydrated models from cryo-electron microscopy data necessitates qualified assumptions regarding hydration [4].

Combining the exact surface topography (molecular dot surface; derived from atomic coordinates of proteins) and our recent hydration algorithms (programs HYDCRYST and HYDMODEL) allows the prediction of individual water molecules preferentially bound to certain amino acid residues [5-9]; a critical comparison of the water sites on the surface, in crevices or channels proves far-reaching identity of crystallographic data and predictions.

The good agreement of the results found for hydrated models by crystallography and other techniques offers the possibility to complement different techniques and to predict details such as the localization of potential water sites - even in those cases where no crystallographic waters or water channels have been identified. Examples presented include proteins ranging from simple proteins to complex, multisubunit, liganded proteins in the MDa range, and water-channel proteins as well.

Keywords: hydration of proteins; individual water molecules; water channels

The potential virulence factor, CFP-10/ESAT-6 complex of Mycobacterium tuberculosis belonging to the WXG-100 protein family has been studied extensively in the last decades. Although the solution structure of the complex has been published the function of this complex still remains unclear. To study the function of the complex we have at first expressed and purified the complex in milligrams of quantity in its native form using M. smegmatis expression system. Our strategy was applied to orthologous and paralogous pairs from virulent and a-virulent mycobacteria. We could express and purify many different CFP-10/ESAT-6 like pairs from M. tuberculosis, M. leprae, M. smegmatis. In contrast to using heterologous expression system of E.coli, M.smeegmatis produces equi-molar ratio of CFP-10 and ESAT-6, as well as the reported post-translational modification of N-terminal acetylation of ESAT-6 could be observed. Due to the wide presents of CFP-10/ESAT-6 like pairs in virulent as well as a-virulent mycobacteria, it is key importance to understand the functional and structural differences among the proteins of this family. As starting point we have crystallized and determined the atomic structure of the CFP-10/ESAT-6 complex produced under native condition to 2.1A. We further determined a structure of the protein complex belonging to the WXG-100 family from S. agalactiae, which forms a four-helical bundle similar to the structure of the CFP-10/ESAT-6, however formed by a homodimer. Using FRET we could characterize that CFP-10 and ESAT-6 indeed can form only a heterodimer and not a homodimer. We could also confirm that the WXG-100 protein form S. agalactiae can only form a homodimer. Based on our study we could get some insight about the key residues for formation of a homo- vs heterodimer complex-formation of the proteins of the WXG100 family.

Keywords: ESAT-6; WXG-100; FRET