DbCa and DbCa1 were initiated to understand the structure-function relationships of the wild type and the insertion mutant.


Keywords: haloalkane dehalogenase; catalytic peptide; halide-binding residues

FA1-MS03-P12

1,3-Propanediol Dehydrogenase from Klebsiella Pneumoniae: Decameric Quaternary Structure and Possible Subunit Cooperativity. Maria Arménia Carrondo1, David Marçânt1 2 3, Ana Toste Rêgo3, Francisco J. Enguita. 1Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2781-901 Oeiras, Portugal. 2Instituto de Medicina Molecular, Universidade de Lisboa, 1649-028 Lisbon, Portugal.

Alcohol dehydrogenases are a rather old subject. They play a central role in the most ancient business of biotechnology: alcoholic fermentation. As a consequence, they also play an important role in our liver and stomach, providing a line of defense against a potentially dangerous molecule, ethanol. It is therefore not strange that they were subject of early attention, with the first alcohol dehydrogenase purified and crystallized in 1937 [1]. However, there are many different enzymes that interconvert alcohols, aldehydes and ketones. [2]. The enzyme 1,3-propanodiol dehydrogenase from Klebsiella pneumoniae is a type III iron-dependent dehydrogenase, a not so well studied group of enzymes, with very few known structures [3]. Klebsiella pneumoniae is a nosocomial pathogen frequently isolated from opportunist infections, especially in clinical environments [4]. In spite of its potential pathogenicity, this microorganism has several metabolic potentials that could be used in biotechnology applications. K. pneumoniae is able to metabolize glycerol as a sole source of carbon and energy [5]. 1,3-Propanediol dehydrogenase is the core of the metabolic pathway for the use of glycerol [6]. We have determined the crystallographic structure of 1,3-propanediol dehydrogenase, a type III Fe-NAD-dependent alcohol dehydrogenase, at 2.7 Å resolution. The structure of the enzyme monomer is closely related to that of other alcohol dehydrogenases. The overall arrangement of the enzyme showed a decameric structure, formed by a pentamer of dimers, which is the catalytic form of the enzyme. Dimers are associated by strong ionic interactions that are responsible for the highly stable in vivo packing of the enzyme. Kinetic properties of the enzyme as determined in the article would suggest that this decameric arrangement is related to the cooperativity between monomers.


Keywords: glycerol metabolism; type III alcohol dehydrogenase; 1,3-propanediol

FA1-MS03-P13

Crystal Structure of Shikimate Dehydrogenase from Helicobacter Pylori. Wen-Chi Cheng1, Shuang-Chih Lin1, Hung-Jung Wang2, Jinn-Moon Yang2, Jong-Yih Lin1, Wen-Ching Wang3. 1Institute of Molecular and Cellular Biology and Department of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan. 2Institute of Bioinformatics and Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan. 3National Chung Hsin University, Taichung, Taiwan.

E-mail: lionbeauty@gmail.com

Shikimate dehydrogenase (EC 1.1.1.25) catalyzes the NADPH-dependent reduction of 3-dehydroshikimate to shikimate, as well as its reverse, and has been developed as a promising target for the discovery of new antimicrobial agent, herbicides, and antiparasitic agents. It is the fourth enzyme in the shikimate pathway for aromatic amino acid biosynthesis in bacteria, fungi, and plants, but not mammals. The crystal structure of native shikimate dehydrogenase form Helicobacter pylori (HpSDH) was solved to 1.6 Å resolution using single-wavelength anomalous dispersion methods, showing an N-terminal α/β domain and a C-terminal Rossmann domain. We have also determined the binary HpSDH-shikimate structure (1.4 Å) and the ternary HpSDH-shikimate-NADPH (2.0 Å) structure, respectively. These structures demonstrate that shikimate binds to the N-terminal domain, while NADPH binds to the Rossmann-fold domain. Furthermore, the apo-form adopts an open-state conformation, while the complex structures have a closed-form conformation. Crucial shikimate binding residues (Ser16, Ser18, Tyr21, Thr65, Lys69, Asn90, Asp105 and Gin237) are identified, which provide a basis for the structure-guided design of SDH inhibitors.

Keywords:crystal structure; shikimate dehydrogenase; shikimate pathway; helicobacter pylori

FA1-MS03-P14

Crystallization of Bifunctional Catalase-phenol Oxidase(CATPO)from Scytalidium Thermophilum. Yonga Yuuguulua, Chi Trinhb, Arwen R. Pearsonb, Mark A. Smithb, Simon Phillipsb, Ufuk Bakirc, Michael J.McPhersonb, Zumrut B. Ogelic. bFood Engineering Department, Middle East Technical University, Turkey. cAstbury Centre for Structural Molecular Biology, University of Leeds, UK.

E-mail: yyonga@metu.edu.tr

Catalase is a common enzyme in all aerobic and many