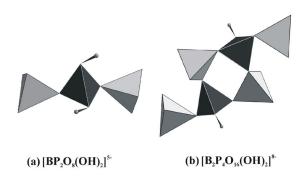
a transition at 493 - 497 K from an ordered, antiferroelectric to a disordered paraelectric hase with a monoclinic structure, spacegroup A/2a [1]. This is accompanied by a pronounced change in the shape and intensity of diffuse scattering and has been modeled with correlated shifts of Ti, Ca and O [1,2]. Previous characterization of this diffuse scattering probed a very limited portion in reciprocal space using synchrotron X-rays [1]. Here, we report preliminary results of a comprehensive neutron single crystal study done at room temperature. A 3D volume in reciprocal space has been measured using the SXD neutron diffractometer at ISIS and several sections have been extracted. Diffuse scattering is characterized by broad bands out to 20Å⁻¹. We use a Monte Carlo simulation approach to characterise this with the average structure as input in order to provide a starting point for a characterization of the diffuse scattering above the phase transition.

[1] Malcherek T., Paulmann C., Chiara Domeneghetti M., Bismayer U. J. Appl. Cryst. 34, 108, **2001**. [2] Ghose S., Ito Y., Hatch D.M., Phys. Chem. Miner. 17, 591, **1991**.

Keywords: neutron diffuse scattering; single crystal diffraction; minerals


FA2-MS01-P18

Synthesis and Crystal Structure of SrFe $[BP_2O_8(OH)_2]$ and $CaCo(H_2O)[BP_2O_8(OH)] \cdot H_2O$. Prashanth Wilfred Menezes^a, Stefan Hoffmann^a, Yurii Prots^a, Rüdiger Kniep^a. ^aMax-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Str. 40, 01187 Dresden, Germany.

E-mail: menezes@cpfs.mpg.de

Single crystals of SrFe[BP₂O₈(OH)₂] and CaCo(H₂O) [BP₂O₀(OH)]·H₂Oweresynthesizedundermildhydrothermal conditions and investigated by single crystal X-ray diffraction [1-2]. The crystal structure of SrFe[BP₂O₈(OH)₂] (triclinic, space group $P\overline{1}$ (No. 2), a = 6.6704(12) Å, b= 6.6927(13) Å, c = 9.3891(19) Å, $\alpha = 109.829(5)^{\circ}$, $\beta =$ $102.068(6)^{\circ}$, $\gamma = 103.151(3)^{\circ}$, $V = 364.74(12) \text{ Å}^3$, Z = 2) contains isolated borophosphate oligomers, [BP,O8(OH),]5-(unbranched tetrahedral triples, Figure 1(a)), which are interconnected by Fe^{III}O₄(OH)₂ coordination octahedra. The resulting framework is characterized by elliptical channels running along [011]. Strontium takes positions inside the channels. SrFe[BP₂O₆(OH)₂] represents the first example in the structural chemistry of borophosphates where the charge of the anionic partial structure is balanced by a divalent and a trivalent cation $(M^{II}M^{III})$. The crystal structure of $CaCo(H,O)[BP,O_s(OH)]\cdot H,O$ (triclinic, space group $P\overline{1}$ (No. 2), a = 6.5793(3) Å, b = 7.8320(1) Å, c = 8.8172(1) Å, $\alpha = 68.785(7)^{\circ}, \ \beta = 82.719(10)^{\circ}, \ \gamma = 73.985(9)^{\circ}, \ V =$ $406.930(19) \text{ Å}^3$, Z = 2) contains layers stacked along [011]. The layers are built from isolated borophosphate oligomers, [B₂P₄O₁₆(OH)₂]⁸- (loop branched tetrahedral hexamers, Figure 1(b)), which are interconnected by dimers of CoO₂O₂₀(H₂O) coordination octahedra. Calcium ions and crystal water are located at the borders of the layers, close to intra-layer cavities. CaCo(H₂O)[BP₂O₆(OH)]·H₂O is the

first example in borophosphate crystal chemistry where dimers of metal octahedra together with borophosphate oligomers form a layered arrangement.

Figure 1. Anionic partial structure of (a) $SrFe[BP_2O_8(OH)_2]$ and (b) $CaCo(H_2O)[BP_2O_8(OH)] \cdot H_2O$ (grey tetrahedra = BO_s ; light grey tetrahedra = PO_s ; grey spheres = protons).

[1] Menezes P.W., Hoffmann S, Prots Yu., Schnelle W., Kniep R., Z. Anorg. Allg. Chem., 2009 (in press). [2] Menezes P.W., Hoffmann S, Prots Yu., Kniep R., Z. Anorg. Allg. Chem., 2009 (in press).

Keywords: borophosphates; hydrothermal growth; single crystals

FA2-MS01-P19

Solid Solution Series in Transition Metal Borophosphates. Falk Gruchow^a, Stefan Hoffmann^a, Rüdiger Kniep^a. ^aMax-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Str. 40, 01187 Dresden, Germany.

E-Mail: gruchow@cpfs.mpg.de

A series of transition metal borophosphates with the general formula $Mn_xCo_{1,x}[BPO_4(OH)_2]$ (x = 0, 0.1, 0.2, ..., 1) was prepared under mild hydrothermal conditions. The reaction products were obtained in high yields as single phase materials according to powder X-ray diffraction data. The compounds $M^{II}[BPO_4(OH),]$ ($M^{II} = Co, Mn$) [1] are isotypic and crystallize in the chiral space groups P3,21 (No. 152) or P3,21 (No. 154), respectively. Their crystal structures are characterized by edge-sharing helical $M^{II}O_{\epsilon}$ -octahedral chains wound around 3, or 3, screw axes (running along [001]). The chains are interconnected by borophosphate single chains of alternating BO₂(OH), and PO₄ tetrahedra running perpendicular to [001], resulting in a three-dimensional framework structure. As a first example in the interesting group of chiral borophosphates a complete miscibility of Co- and Mn-based phases has been proven experimentally. A linear correlation between the nominal manganese content x and the lattice parameters (or the cell volume V) was found. Further studies regarding morphological aspects, magnetic properties and possible ordering effects of the metal cations are in progress.