to the formation of dimeric arrangements through two Fe-S bonds between distorted square based \([\text{Fe}(S,L)_2]\) units, \([\text{Fe}(S,L)_2]\). The first, and so far unique, exception to this rule was the \(n\)-Bu-N \([\text{Fe(qdt)}_2]\) complex [1], displaying a perfectly square planar coordination geometry and a \(S = 1/2\) spin state.

The crystal structure of the new (BrBzPy) \((\text{BrBzPy})_{1/2}\) spin state.

Keywords: molecular compounds; Fe-bisdithiolene complexes; crystal engineering

FA4-MS02-P25

pH Indicators – Molecular Structure and Proton Distribution. Zofia Urbanczyk-Lipkowska, Przemysław Kalicki. Institute of Organic Chemistry, Polish Academy of Sciences. 01-224 Warsaw, Poland

E-mail: ocrys@icho.edu.pl

A pH indicators are usually weak bases or weak acids that recognize selectively hydronium ions. In common organic solvents they exist as equilibrium of variously protonated forms and/or open/cyclic structures. Apart of common use in chemical laboratories, medical diagnostics and industry, solid state structural data on pH indicators are scarce [1-3]. Here we present X-ray structures of bromocresol purple, bromothymol blue, 4’ 5’-dibromothymol, and Congo red crystallized in different crystallization conditions and at different pH. Such problems like proton distribution and electronic structure of the molecules will be addressed.

Keywords: pH indicators; lactones; electronic structure

FA4-MS02-P26

E-mail: jacobsa@cput.ac.za

The compound, 9-(4-methoxyphenol)-9H-xanthen-9-ol (H) has proved to be a versatile host and has included a variety of small organic guests [1,2]. Solid-solid reactions with this host and a series of polycyclic unsaturated hydrocarbons have also been reported [3]. In this study the host compound, H, has successfully included the solid guests 1-naphthylamine(NAPA), 8-hydroxyquinoline(HQ), triethylenediamine(TEDA) and acridine(ACR). The structures for all four inclusion compounds were solved in the space group P-1. Similar packing motifs were found for the NAPA and HQ inclusion compounds where neighbouring host molecules form dimers of the type (Host)-OH•••O(Host). The TEDA and ACR guests hydrogen bond to the host molecule. In addition the compounds were also formed by direct grinding of the host with each of the guests and the kinetics of the solid-solid reactions determined using powder x-ray diffraction. The kinetics for all four reactions were modelled using the first order rate law: \(f(\alpha)=\ln(1-\alpha)=-kt\) where \(\alpha\) is the extent of the reaction.

Keywords: solid-solid reactions; inclusion compounds; kinetics

FA4-MS02-P27

E-mail: aydemir@cpfs.mpg.de

The formation of voids in the framework of Ge clathrates has a strong impact on their crystallographic and physical properties. In the binary system Ba – Ge, the composition of a hypothetical clathrate-I compound without defects is \(\text{Ba}_8\text{Ge}_{46}\). Since a four-bonded framework \(\text{Ge}_{46}\) can be already formed with uncharged Ge atoms, the additional valence electrons of the Ba atoms would occupy antibonding states. However, the formation of defects is more favorable for Ge clathrates. Each defect \(\square\) in a framework \(\text{Ge}_{46}\) is surrounded by four three-bonded Ge atoms \(\text{Ge}_3\). Hence, the 16 valence electrons from 8 Ba atoms would be completely compensated by four defects surrounded by 16 \((3\text{b})\text{Ge}^+\). Actually, instead of the expected composition \(\text{Ba}_{8}\text{Ge}_{46}\square\), the binary clathrate was found to be \(\text{Ba}_{8}\text{Ge}_{46}\square\) with 4 conduction electrons per formula unit [1]. Ternary type-I clathrates Ba – TM – Ge can be obtained with

** FA4-MS02-P25**

FA4-MS02-P26

FA4-MS02-P27