Mixed metal materials can be used in different applications, for instance in opto-electronic devices or as metal oxides in high-Tc superconductors (BSSCO, YBCO) [1, 2]. A synthetic strategy to obtain mixed metal oxides is to use decomposition techniques like (metal-organic) chemical vapor deposition (MO-CVD) to combat metal-containing volatile complexes. We propose the development of new heterometallic complexes with tailored electronic, optical and/or magnetic properties. Combining different metal ions in molecular devices and analyzing their behaviour is interesting for later applications, and also of fundamental interest [3]. For this purpose, we developed a multitopic ligand system based on open polyether molecules and functional N-termini, which allows the coordination to different metal ion types by different ligating atoms. We will show that this concept works by presenting first results, which could be used for the synthesis of BSSCO or YBCO.

Keywords: single source precursor; mixed metal complexes; multitopic ligand system

Dynamic Porous Crystals via Halogen Bonding. Giuseppe Resnati a,b, Pierangelo Metrangolo a, Tullio Pilati a, Giancarlo Terraneo b. "NFMLab, DCMIC, Politecnico di Milano, bISTM-CNR, Milano, Italy. E-mail: giuseppe.resnati@polimi.it

Different self-assembled porous architectures with zero-dimensional or infinite one-, two-, and three-dimensional network structures will be described. The systems are constructed from a variety of molecular building blocks which interact under control of the halogen bonding, the attractive interaction involving halogens as electron acceptor sites [1]. In all case iodoperfluoroalkanes and -arenes moieties have been used as halogen bonding donor sites as the strong electron withdrawing effect of fluorine boosts the electron acceptor ability of iodine to the point that the halogen bondings formed with pyridine or anionic donor sites are strong enough to sustain remarkably high porosity in the formed heteromeric architectures. In some architectures halogen bonding and hydrogen bonding or halogen bonding and electrostatic interactions cooperate in locking the modules at their positions in the co-crystals. Coordination-polymer crystals with gated channels [2] or layered structure will be described. The halogen bonding driven formation of dynamic porous networks from non-porous crystals will be described [3]. On the basis that binding of modules with more than one binding site is largely dependent on structural complementarity with the interacting moieties, we reasoned that matching the size of the halogen-bonded supramolecular dianion with the size of a telechelic hydrocarbon dication cation should increase the strength of electrostatic binding, thus determining a selective molecular recognition. We thus challenged the densely packed crystalline alfa-omega-bis(trimethylammonium) diiodides with alfa-omega-diiodoperfluoroalkanes of different size and observed a rapid and selective take-up of only the conveniently sized alfa-omega-diiodoperfluoroalkane. Starting from non-porous materials, dynamically porous materials are formed and their structure is controlled by the size matching between the dication and the supramolecular dianion. The selective take-up of the matching diiodoperfluoroalkane occurs in solution and also in solid-gas reactions when powdered telechelic dionium diiodides are challenged by vapors of diiodoperfluoroalkane.

Keywords: crystal engineering; porous solids; supramolecular assemblies

Silver Coordination Complexes with Fluorescent Ligands. Jing Chen a, Katharina M. Fromm b. "Department of Chemistry, University of Fribourg. E-mail: Jing.Chen@unifr.ch

Recently, metal-organic complexes have attracted extensive attention due to their potential application in electronics, magnetism, optical, and catalytic materials as well as their fantastic structures. [1-4] Molecular, self-assembled multilayers on selected surfaces based on metal-organic coordination networks may form more complicated structures which can exhibit abundant properties, and even show functionalities not provided by a single subunit building block. [3,9] So far, a lot of effort has been done to build these kinds of functional surfaces. Our idea is to design and synthesize some new ligands having fluorescent properties and coordinating with silver ions, the latter of which is regarded as a powerful antibacterial material used for many years, to obtain the corresponding fluorescent silver complexes. Furthermore, we want to coat them on a gold surface by molecular self-assembly, to study the structures and the morphologies of the surfaces, and investigate the optical and antibacterial properties. Herein, the structures and fluorescence spectra of some compounds will be presented.