

Figure 1. ortep diagram of $[\mathrm{Fe}(\mathrm{TpivPP})(\mathrm{NCO})]^{-}$ion complex showing thermal ellipsoids at $30 \%$ probability level.

Keywords: porphyrins; cyanato-N iron(II); X-ray molecular structure

## FA4-MS06-P24

Solid State Preparation of Palladium-carbene Complexes. Emily M. Mutambi ${ }^{\text {a }}$, Christopher J. Adams ${ }^{a}$, A. Guy Orpen ${ }^{\text {a }}{ }^{a}$ School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
E-mail: chemm@bristol.ac.uk
There is great interest in palladium complexes as catalysts, and over the past ten years the number of palladium complexes of $N$-heterocyclic ligands has rapidly increased. [1] There is an enormous amount of data currently available on NHC chemistry, and methods for the synthesis of NHCs and their metal complexes are regularly reported. $[2,3]$ Synthetic procedures leading to precursor imidazolium salts have been elucidated including the development of many routes that allow the introduction of an NHC ligand to a metal centre.[4] As part of our ongoing research in this area we will report the synthesis of a number of new palladium complexes incorporating sterically bulky carbene ligands which have been prepared in bulk by solid state methods (Scheme 1), with single crystals grown by employing crystal growing techniques using solution methods. The powders patterns of the two different techniques have been compared to prove that the bulk material prepared in solid state is a true representation of the desired product.


Scheme 1: Synthetic route for the palladiumcarbene complexes: (i) direct grinding with HLCl ; (ii) mechanochemical elimination of HCl (grinding with $\mathrm{KOH} / \mathrm{K} 2 \mathrm{CO} 3 / \mathrm{KOBut}$ ); and (iii) Preparation
of the palladium complexes by solution methods; $\mathrm{L}=$ Ligand
[1] C. P. Newman, R. J. Deeth, G. J. Clarkson and J. P. Rourke, Organomet., 2007, 26, 6225-6233.[2] C. P. Newman, G. J. Clarkson and J. P. Rourke, J. Organomet. Chem., 2007, 692, 4962-4968. [3]. R. A. Moss, L. Wang, E. Weintraub and K. Krogh-Jespersen, J. Phys. Chem. A, 2008, 112, 4651-4659. [4].W. Wei, Y. C. Qin, M. M. Luo, P. F. Xia and M. S. Wong, Organomet., 2008, 27, 22682272.

Keywords: solid state; N -heterocyclic ligands; palladium

## FA4-MS06-P25

Preparation and Structures of $\mathrm{RCCo}_{3}(\mathrm{CO})_{6}$ (triphos) clusters $\left[\mathbf{R}=\mathrm{Me}, \mathrm{Ph}, \mathrm{CO}_{2} \mathrm{Et}, \mathrm{Fc}\right]$. Jim Simpson ${ }^{\text {a }}$, C. John McAdam ${ }^{\text {a }}$, Brian H. Robinson ${ }^{\text {a }}$, Roderick G. Stanley ${ }^{\text {a }}$. ${ }^{a}$ Department of Chemistry, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand.
E-mail:jsimpson@alkali.otago.ac.nz
In simple methinyltricobaltnonacarbonyl clusters, $\mathrm{RCCo}_{3}(\mathrm{CO})_{9}$, six of the carbonyl ligands occupy equatorial sites, close to the plane of the triangle of cobalt atoms with the the other three carbonyl groups approximately orthogonal to that plane in axial positions. Monodentate or bidentate phosphine or phosphite ligands almost invariably substitute carbonyl groups from equatorial sites. Furthermore, the remaining equatorial carbonyl ligands generally adopt terminal conformations; carbonyl bridging of the Co-Co bonds is found only in situations where the apical substituent R, or the substituting ligands, significantly increase the electron density on the $\mathrm{CCo}_{3}$ cluster core.


We are interested in the coordination behaviour of the potentially tridentate 1,1,1-tris(diphenylphosphinomethyl)ethane(triphos), asitschemistry isrelativelyunderdeveloped, particularly in organometallic compounds. The ligand reacts readily with various tricobalt carbon clusters in refluxing petroleum ether/acetone to replace three carbonyl ligands and give the resulting $\mathrm{RCCo}_{3}(\mathrm{CO})_{6}$ (triphos) complexes in moderate yields. X-ray quality crystals of four of these products have been obtained and their structures will be reported. The triphos ligand coordinates with its P atoms occupying axial sites on the $\mathrm{CCo}_{3}$ core and the build-up of electron density accompanying this substitution results

