

 Schomaker V. Trueblood K.N., Acta Cryst., 1968, B24, 63. [2]
Willis B.T.M., Pryor A.W. Thermal Vibrations in Crystallography, 1975, Cambridge University Press, London. [3] TOPAS version
4.1, 2008, Bruker AXS. [4] Brock C.P., Dunitz J. Acta Cryst., 1982, B38, 2218. [5] Capelli, S.C., Albinati A., Mason S.A., Willis B.T.M. J. Phys. Chem. A, 2006, 110, 11695.

Keywords: powder diffractometry; thermal motion in crystal; TLS matrices

## FA5-MS01-P26

Substitution Effects in Some Bismuth Based Rare Earth Manganites. <u>Kiril Krezhov</u><sup>a</sup>, Stefan Kovachev<sup>a</sup>, Daniela Kovacheva<sup>b</sup>, Erzhebet Svab<sup>c</sup>, Francoise Bourée<sup>d</sup>, Gilles André<sup>d</sup>. <sup>a</sup>Institute for Nuclear Research and Nuclear Energy. <sup>b</sup>Institute of General and Inorganic Chemistry, Sofia, Bulgaria. <sup>c</sup>Research Institute for Solid State Physics and Optics, Budapest, Hungary. <sup>d</sup>Laboratoire Leon Brillouin, CEA/Saclay, Gif-sur-Yvette, France. E-mail: <u>krezhov@inrne.bas.bg</u>

In consistence with other authors we established that the characteristic signs attributed to the charge ordering (CO) and orbital ordering (OO) in the parent manganites  $Bi_{0.5}Ca_{0.5}MnO_3$  and  $Bi_{0.5}Sr_{0.5}MnO_3$  appear at  $T_{CO} \approx 320$  K and  $T_{\rm co} \approx 525$  K, respectively [1]. We investigated the magnetic ordering and CO/OO phenomena with respect to temperature and chemical doping in  $Bi_{0.25}R_{0.25}AA_{0.5}MnO_3$  (R = La, Nd, Ho, Er, Tm) (A-site doping [1-3]) and  $Bi_{0.5}AA_{0.5}Fe_xMn_{1.x}O_3$ (B-site doping [4-6]), where AA stands for Ca or Sr. For both sets of Bi-based manganites prepared as polycrystalline powders by controlled solid-state reaction we correlated the structural findings from high-resolution X-ray and neutron powder diffraction with results for transport and magnetic properties. At 295 K Bi<sub>0.25</sub>R<sub>0.25</sub>Ca<sub>0.5</sub>MnO<sub>3</sub> are in paramagnetic phase of small monoclinic distortion allowing for structural description in orthorhombic Pnma symmetry. A significant anisotropic distortion of the MnO<sub>6</sub> octahedra occurs in the characteristic manner associated with the particular orbital order of manganese ions at half doping level. The findings corroborate the conclusion that the effective Bi3+ ionic radius in Bi-Ca manganites is close in value to that of Nd<sup>3+</sup> indicating that the lone pair character of 6s<sup>2</sup> Bi<sup>3+</sup> orbitals is rather constrained than dominant. Except for

 $Bi_{0.25}La_{0.25}Ca_{0.5}MnO_3$  which undergoes a ferromagnetic transition at  $T_c = 281$  K followed by a transition to an antiferromagnetic state at lower temperatures, the rest compounds become antiferromagnetic. At 10 K the ground magnetic state of most Ca-Bi compounds could be acceptably described by the insulating antiferromagnetic CE ordering. The RT cell parameters of Bi<sub>0.5</sub>Ca<sub>0.5</sub>Fe<sub>x</sub>Mn<sub>1.5</sub>  $_{\rm x}O_3$  (0  $\leq x \leq 0.6$ ) change monotonously with increasing x. The compounds are antiferromagnetic with  $T_N$  which decreases with increasing Fe-substitution. For  $x \ge 0.1$ the antiferromagnetism is accompanied by a weak ferromagnetism. The CO-OO order in the neat form is suppressed at very low Fe-substitution ( $x \le 0.05$ ). Room temperature diffraction data of  $Bi_{0.5}Sr_{0.5}Fe_xMn_{1,x}O_3$  ( $0 \le x \le x$ 0.3 and cubic for x > 0.4. Unit cell volume increases with x. The charge/orbital order was observed for the compound without Fe. The magnetic state of the compounds with different Fe-content changes from paramagnetic to weak antiferromagnetic below T<sub>N</sub>, in the range 116 K - 155 K. All Ca-Fe and Sr-Fe compounds are semiconductors between 100 K and 600 K and there was no magnetoresistivity effect in fields up to 7 kOe.

 Krezhov K., Kovacheva D., Svab E., Bourée F., Stamenov, P. Physica B, 2004, 350/1-3S, E13. [2] Krezhov K., Kovacheva D., Svab E., Bourée F., J. Phys: Condens. Matter, 2005, 17, S3139. [3] Tzankov D., Kovacheva D., Krezhov K., Puzniak R., Wiśniewski A., Sváb E., Mikhov M., J. Phys: Condens. Matter, 2005, 17, 4319, [4] Krezhov K., AIP Conf. Proc., 2007, 899 (1), 263 [5] Krezhov K., RAST07 IEEE Proceedings, 2007, 123. [6] Tzankov D., Kovacheva D., Krezhov K., Puzniak R., Wiśniewski A., Mikhov M., J. Appl. Phys. 103, 2008, 053910.

Keywords: charge order; magnetic structure; manganites

## FA5-MS01-P27

Molecular and Crystalline Structures of Three (s)-4-alkoxycarbonyl-2-azetidinones Containing Long Alkyl Side Chains From Synchrotron X-ray Powder Diffraction Data. Luis E. Seijas<sup>a</sup>, Asiloé J. Moraª, Gerzon E. Delgadoª, Francisco Lopéz-Carrasquero<sup>b</sup>, Michela Brunelli<sup>c</sup>, Andrew N. Fitch<sup>d</sup>. <sup>a</sup>Laboratorio de Cristalografía, Departamento de Ouímica, Facultad de Ciencias, Universidad de Los Andes, Mérida, 5101, Venezuela. <sup>b</sup>Laboratorio de Polímeros, Departamento de Química, Facultad de Ciencias, Universidad de Los Andes, Mérida, 5101, Venezuela. °ILL Institut Laue-Langevin, BP 156, 38042 Grenoble cedex 9, France. dEuropean Synchrotron Radiation Facility, BP 220, 38043 Grenoble cedex, France. E-mail: asiloe@ula.ve

The (S)-4-alkoxycarbonyl-2-azetidinones are optically active  $\beta$ -lactam derivatives of aspartic acid, which are used as precursors of carbapenems-type antibiotics and poly- $\beta$ -aspartates. The crystal structures of three (S)-4-alkoxycarbonyl-2-azetidinone with alkyl chains with

<sup>25&</sup>lt;sup>th</sup> European Crystallographic Meeting, ECM 25, İstanbul, 2009 *Acta Cryst.* (2009). A**65**, s 327