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Our presentation will summarize our efforts towards a more 
in-depth understanding of the ability of flavoenzymes to 
differentially react with oxygen [1]. We have investigated two 
different types of monooxygenases, which are capable of 
activating molecular oxygen through the stabilization of a 
flavin-(hydro)peroxide intermediate. These enzymes exhibit a 
properly shaped cavity in front of the C4a atom of the flavin 
that promotes intermediate stabilization [2,3]. Most 
remarkably, in flavin-containing monooxygenases flavin-
hydroperoxide formation directly involves the NADP+ ligand, 
which, therefore, appears to play the dual function of reducing 
the flavin and stabilizing a critical catalytic intermediate. We 
are using a combination of site directed mutagenesis and 
molecular dynamics to investigate the role of residues 
surrounding the flavin in tuning oxygen reactivity. 
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Photosystem II (PSII) is a homodimeric protein-cofactor 
complex acting as light-driven water:plastoquinone oxido-
reductase and is located in the photosynthetic thylakoid 
membrane of plants, green algae and cyanobacteria. PSII 
oxidizes two water molecules at the unique Mn4Ca cluster to 
molecular (atmospheric) oxygen, 4 protons and 4 electrons. 
The protons drive ATP synthetase, and the electrons reduce 
plastoquinone (QB) to plastoquinol (QBH2) that is exported and 
delivers the electrons (through the cytochrome b6f complex) to 

photosystem I. Here the electrons gain a high reducing 
potential and serve at NADP reductase to generate NADPH 
that together with ATP reduces CO2 to carbohydrates in the 
Calvin cycle. 
The crystal structure of PSII from Thermosynecho-coccus 
elongatus at 2.9-Å resolution allowed the unambiguous 
assignment of all 20 protein subunits and complete modeling 
of all 86 cofactors, among them 25 integral lipids, per PSII 
monomer [1]. The presence of a third plastoquinone QC and a 
second plastoquinone-transfer channel, which were not 
observed before, suggest mechanisms for plastoquinol-plasto-
quinone exchange, and we calculated possible water or 
dioxygen and proton channels. Putative oxygen positions 
obtained from Xenon derivative crystals indicate a role for 
lipids in oxygen diffusion to the cytoplasmic side of PSII. The 
chloride position suggests a role in proton-transfer reactions 
because it is bound through a putative water molecule to the 
Mn4Ca cluster and is close to two possible proton transfer 
channels. 
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In the biosynthesis pathway of (bacterio)chlorophyll, two 
evolutionary distinct enzymes catalyze the two electron 
reduction of ring D of protochlorophyllide to chlorophyllide: 
In angiosperms monomeric, light-dependent protochloro-
phyllide oxidoreductase (LPOR) catalyses the reaction, 
whereas anoxygenic, photosynthetic bacteria make use of an 
ATP-dependent process catalyzed by dark operative 
protochlorophyllide oxidoreductase (DPOR). DPOR is 
composed of three distinct subunits, ChlL, ChlN and ChlB. 
ChlL forms a homodimer ChlL2 with an intersubunit [4Fe-4S] 
cluster. ChlL2 is an ATP-dependent reductase transferring 
single electrons to the heterotetrameric complex of the other 
two proteins (ChlN/ChlB)2. Each half of this tetramer bears an 
intersubunit [4Fe 4S]-cluster and has a protochlorophyllide 
binding site.  
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