for all types of guest molecules which are ordered in the middle of the channel, whereas inflexible \([\text{V}(\text{O})(\text{bdc})]_n \) can adsorb only a little amount of the guest (5-10 mol. %). In the first case, the stoichiometry of inclusion compound is Guest\(_{6,25}\)[Al(OH)(bdc)] or Guest\(_{8,25}\)[Al(OH)(bdc)]. In the case of \([\text{V}(\text{O})(\text{bdc})]_n \) only cobaltocene forms inclusion phase composition cobaltocene\(_6\)[V(O)(bdc)]_n due to the formation of charge-transfer complex [4]. Hydrogen bonds, host-guest and guest-guest interactions as well as structural effects of the substitute group inside the guest molecule have been studied in details for all inclusion compounds.

Keywords: coordination polymers, host-guest complexes, powder structure determination

FA4-MS29-T04

Dimensional Encapsulation of Halogen-Bonded Supramolecular Anions, Pierangelo Metrangolo\(^{a,b}\), Gabriella Cavallo\(^c\), Manu Lahtinen\(^c\), Tulio Pilati\(^c\), Kari Rissanen\(^c\), Giuseppe Resnati\(^{a,b}\), Giancarlo Terraneo\(^{a,b}\).

\(^{a}\)NFMLab - D.C.M.I.C. “Giulio Natta”, Politecnico di Milano, Via L. Mancinelli 7, 20131 Milan, Italy. \(^{b}\)CNST - IITT@POLIMI, Politecnico di Milano, Via G. Pascoli 70/3, 20133 Milan, Italy. \(^{c}\)Department of Chemistry, University of Jyväskylä, Post Office Box 35, Jyväskylä FI–40014, Finland. \(^{d}\)C.N.R. - I.S.T.M., University of Milan, Via C. Golgi 19, 20133 Milan, Italy.

E-mail: pierangelo.metrangolo@polimi.it

Halogen bonding [1] has increasingly facilitated the assembly of diverse host-guest solids. In this contribution, we show that a well-known class of organic salts, bis(trimethylammonium) alkane diiodides, can reversibly encapsulate I\(_2\) [2] and a series of \(\alpha,\omega \)-diiodoperfluoroalkanes (DIPFAs) through intermolecular interactions between the host’s I\(^–\) anions and the guest’s terminal iodine substituents [3]. In particular, bis(trimethylammonium)hexane diiodide encapsulates I\(_2\) yielding in a predictable and controllable manner the selective formation of the rare polyiodide species I\(^–\)I\(_2\)I\(^–\). Similarly, the process is highly selective for the DIPFA that forms an I\(^–\)I\(_2\)I\(^–\) superanion, which matches in length to the chosen dication. DIPFAs that are 2 to 12 carbons in length can thereby be isolated from mixtures by means of crystallization from solution upon addition of the dissolved size-matched ionic salt. The solid-state salts can also selectively capture I\(_2\) and the DIPFAs from the vapour phase, yielding the same product formed from solution despite a lack of porosity of the starting lattice structure.

Keywords: Halogen Bonding, Dynamic Porous Materials, Anions

FA4-MS29-T05

Towards docking-based prediction of host-guest framework systems

Peter A. Wood, Oliver Korb.

Cambridge Crystallographic Data Centre, Cambridge, UK.

E-mail: wood@ccdc.cam.ac.uk

The design and prediction of multi-component organic crystal structures is of interest to many areas of the chemical industry. Host-guest framework structures can, for example, be used to tune the physicochemical properties of a solid form, to achieve selective separation and even as catalysts. Current design and prediction methods have limitations though; crystal structure prediction (CSP) can be very computationally expensive for each individual multi-component system and there is also a limit to the number of experimental screens that can be carried out.

These multi-component structures do, however, essentially represent a form of host-guest binding related to that seen when a ligand interacts with a protein binding site. In this study we investigate whether established techniques for predicting protein-ligand binding can be applied to the challenge of modelling small molecule host-guest crystalline frameworks.

In order to examine the general applicability of this technique, an off-the-shelf docking package (GOLD [1]) is used with a standard scoring function (CHEMPLP [2]) that has been trained for interactions in protein-ligand binding sites. A range of experimentally-determined channel-based test structures are used to evaluate the effectiveness of the docking package. The test structures include API frameworks, well-known organic inclusion compounds and metal-organic frameworks. This work shows that the principles of docking can be successfully applied to the crystal engineering problem of predicting host-guest systems.

Keywords: crystal engineering, docking, guest-host structures