have previously indicated the presence of a reversible oxidation-reduction reaction in which Cu(I) is oxidized to Cu(II) along with the formation of CuO [3]. This reaction is followed by the partial auto-reduction of Cu(II) to Cu(I). As a result of these observations, this study is directed towards gaining further understanding of the structural characteristics of members of the CuSICON family with general formula CuM₂P₃O₁₂ (M = Ti, Zr, Hf, Sn). Thus far in situ laboratory XRPD studies have shown that the oxidation-reduction reaction in question is the cause of a reversible 2nd order phase transformation. For example, the heating of CuSn₂P₃O₁₂ (S.G.:167 R-3cH) results in the oxidation of the material to Cu₂Sn₃P₃O₁₂ (S.G.:148 R-3), a Cu(II) compound, which then through continued heating is reduced back to CuSn₂P₃O₁₂ (S.G.:167 R-3cH) (figure 1). In each case small quantities of CuO was observed indicating that the reduction reaction does not continue to completion. Furthermore, it was found that quenching experiments conducted on the Cu(II) phase isolated this stable material which is distinct from the parent phase. This result has implications on any future applications that may be envisaged for this material and indeed similar results were obtained with all of the members that have been studied. Selected results will be presented.

Figure 1. Topographical view of XRPD data: CuSn₂P₃O₁₂ indicating the presence of a reversible phase transformation.


Keywords: in-situ powder diffraction, investigating phase changes during firing, thermal studies

FA2-MS14-P14

Structure investigations in the V-Mo-Te-O system.
Lars Giebeler⁵,⁶, Helmut Ehrenberg⁵,⁶, Gerhard Miehe⁵,⁶, Hartmut Fuss⁵,⁶, Institute for Materials Science, Technische Universität Darmstadt, Germany. ⁵Technische Universität Dresden, Institut für Werkstoffwissenschaft, Dresden, Germany. ⁶IFW Dresden, Institute for Complex Materials, Dresden, Germany. E-mail: l.giebeler@ifw-dresden.de

Oxides with the elemental composition V-Mo-Te-O (MoVTe) are well known for high catalytic activity and selectivity in the heterogeneous ammonoxidation of propane to acrylonitrile [1]. For the direct oxidation of propane to acrylic acid, MoVTe systems also provide promising catalytic activity [2]. In literature actually three MoVTe structures are characterized and discussed for their effect on catalysis [3-4]. First two structures are orthorhombic with space groups Pba₂ (a = 21.334(2) Å, b = 26.658(2) Å, c = 4.0146(3) Å, M₁ structure) and Pmn₂ (a = 12.6294(6) Å, b = 7.29156(30) Å, c = 4.02100(7) Å, M₂ structure) [3]. The third, bronze-like structure is indexed with a hexagonal cell and lattice constants a = 7.27(3) Å and c = 4.012(2) Å [4]. We present a new structure in the MoVTe system which could be highly interesting for catalysis but synthesized by a classical solid state method.

The crystals were obtained by a chemical transport of a pre-calcined, stoichiometric mixture of V₂O₅ and MoO₃. The reaction was carried out at 102 mbar and a temperature gradient T₂ (560 °C) → T₁ (450 °C) for six days with TeCl₄ as transporting agent in a quartz tube. Black prismatic crystals were deposited in two different zones. The first zone provides nicely shaped but irregular prisms and the second zone at the end of the tube (T₁) exhibits a mixture of needle-like crystals and highly-twinned prisms.

First indexing was tried with a hexagonal cell which failed. After TEM investigations a reticular merohedrally twinned crystal is described consisting of three domains rotated through 120° about the pseudo-hexagonal axis. The unwrapping of individual layers in reciprocal space revealed unusual extinction rules. The observed reflections can all be explained by the overlap of three orthorhombic domains. These are indexed by an orthorhombic cell with the space group Pca₂₁ and a = 14.543(1) Å, b = 4.0066(3) Å, c = 12.604(1) Å (R indices all data 0.0774). The structure was solved and refined and the results are in full agreement with electron and X-ray powder diffraction experiments.

The presented structure has to be discussed in context with the existing catalytically relevant pseudo-hexagonal [3] and the hexagonal [4] structures. The M₂ structure seems to be closely related to the structure described here. Both structures exhibit similar building units like corner-sharing metal-oxygen octahedra and a Te-O chain of TeO₄E units (E = lone electron pair) shifted from the center of the hexagonal channels. Linked to catalysis, this new structure may also have an interesting activity towards selective oxidation or ammonoxidation of alkanes and olefins comparable to the existing structures.


Keywords: Catalysis, Twinning, Channel structure

FA2-MS14-P15

Modulation of properties in a series of porous hybrid metal oxides. Nathalie Guillon⁶, Carine Livage⁶, Pierre Rabub⁶, a Institut Lavoisier, UMR CNRS 8180, Université de Versailles St. Quentin, 78035 Versailles, France. bInstitut de Physique et Chimie des Matériaux de Strasbourg, UMR CNRS 7504, 67037 Strasbourg, France. E-mail: nathalie.guillon@uvsq.fr

Hybrid metal oxides are porous materials that show promising applications in the field of heterogeneous catalysis, gas adsorption, nonlinear optical devices and magnetic materials. This class of compounds is built up from 3-D inorganic skeleton which topology is modulated by the presence of linked carboxylates. In spite of their potential applications, very few of these compounds have been described. In this domain, we have developed a family of compounds based on the 3-D connection of metal octahedra helices (see Fig. 1), generating 20 metal atoms windows and large crossing tunnels [(10,3) cubic network]. The first of the series named MIL-77, was obtained with nickel and glutaric acid [1]. It is a pure ferromagnet and it reveals a breathing effect of its 3D oxide