Order and disordered crystal structures of the title compound are built up by two chemically rather distinct kinds of alternating layers: (1) hydrophilic NaSO₃(H₂O) and (2) hydrophobic C₆H₄ClI layers [1]. The hydrophilic layers are ordered and act like templates on the hydrophobic layers. Due to this steric condition, the C₆H₄ rings have to be mutually perpendicular aligned in their respective layers. These have an orthogonal metric with layer-group symmetry C1m1, layer orientation (001). The ability for different stacking sequences of these layers gives rise to a family of structures, ordered and disordered ones. Their discussion will follow the lines of order-disorder (OD) theory [2, 3], and starts with the OD groupoid family symbol:

\[
C \quad m \quad (1) \quad \{1 \ 2 \ 1 \} \\
\{2 \ 1 \ \nu_s \}
\]

The OD approach results in three maximum degree of order (MDO) polytypes and in the disordered family structure, all structures consisting of four layers (1) and (2) in their respective unit cells. Two of the MDO structures have space-group type P12₁/c1 (Z = 8) (layer orientation (010)) with the same lattice parameters. The third MDO structure has space-group type C1c1 (Z = 16), with an orthogonal metric (layer orientation (001)). The disordered family structure (average structure) is orthorhombic, space-group type Pnma (Z = 4) (layers parallel (100)).

One of the MDO 'P2₁/c polytypes' could be identified by X-ray single-crystal analysis, yet with severe disorder, as exemplified by streaks of diffuse scattering in direction perpendicular to the structural layers [1]. Moreover is this structure twinned, the twin laws reflecting the two mirror planes of the point group of the orthorhombic family structure perpendicular to the layers.

In addition to the three MDO polytypes and the disordered family structure, all with a periodicity of four layers, less-ordered structures with larger periodicities or disordered ones without any stacking periodicity may occur. Altogether these polytypes establish the OD family of structures of the title compound.

Keywords: polytypes, order-disorder (OD) theory, sodium p-chlorobenzenesulfonate monohydrate
(TMA)\textsubscript{2}[TiF\textsubscript{6}] is pseudocubic rhombohedral and ferroelastic at RT. It is isostructural with (TMA)\textsubscript{2}[OsF\textsubscript{6}] \cite{1}. Crystals grown from aqueous solution exhibit birefringence and twinning along the pseudocubic \{110\} and \{100\} faces. By applying shear stress, the lattice of a single crystal could be reoriented.

\cite{1} Käppers, H.; Göbel, O.; Bruhn, C.; Schmahl, W. W. Z. Krist. 2001, 216, 354.

Keywords: (TMA)\textsubscript{2}[TiF\textsubscript{6}], RT structure, Ferroelasticity

FA2-MS16-P30

A structural study of the lithiophilite-sicklerite series. Frédéric Haterta, 4Laboratory of Mineralogy, University of Liège, Belgium.

E-mail: fhatert@ulg.ac.be

Minerals of the triphylite-lithiophilite series, Li\textsubscript{2}(Fe3+,Mn2+)PO\textsubscript{4}, Li(Mn3+,Fe3+)PO\textsubscript{4}, are primary phosphates which occur in the geological context of rare-element granitic pegmatites. The oxidation processes, affecting the pegmatites during their evolution, provoke a progressive oxidation of triphylite in ferrisicklerite [Li\textsubscript{1.75}(Fe3+,Mn2+)PO\textsubscript{4}] and in heterosite [(Fe3+,Mn3+)PO\textsubscript{4}], and of lithiophilite in sicklerite [Li\textsubscript{0.4}(Mn2+,Fe3+)PO\textsubscript{4}] and in purpurite [(Mn3+,Fe3+)PO\textsubscript{4}] \cite{1,2}. These phosphates exhibit the olivine structure, but the detailed structural modifications induced by these oxidation processes were not previously investigated. It is noteworthy that these olivine-type phosphates are good candidates for the development of new cathode materials for Li-ion batteries.

In this study, we investigated a natural sample from the Altai Mountains, China, in which a progressive transition from lithiophilite to sicklerite is observed. Under the polarizing microscope, lithiophilite is colorless, whereas sicklerite shows a deep orange color. Several grains show intermediate colors, microscopically, lithiophilite is colorless, whereas sicklerite shows a deep orange color. Several grains show intermediate colors, suggesting a progressive transition from lithiophilite to sicklerite. This progressive transition if confirmed by SIMS (Secondary Ion Mass Spectrometry) analyses, which indicate Li values from 0.96 to 0.69 Li atoms per formula unit (p.f.u.). Five single-crystals, corresponding to zones with different colors, were extracted from the sample and investigated by single-crystal X-ray diffraction techniques (Oxford Diffraction Gemini PX Ultra 4-circle diffractometer, 50 kV, 40 mA, MoK\textsubscript{x}). The samples are orthorhombic, space group Pbnm, with unit-cell parameters ranging from a = 4.736(1), b = 10.432(2), c = 6.088(1) Å (lithiophilite) to a = 4.765(1), b = 10.338(2), c = 6.060(1) Å (sicklerite). Surprisingly, the oxidation of lithiophilite to sicklerite provokes an increase of the a parameter, whereas b and c decrease significantly.

The structures were refined to R1 values ranging from 2.19 to 2.94 %, and show a topology identical to that of olivine-type phosphates reported in the literature \cite{1}. Li occurs on the M(2) site, and shows occupancy factors from 0.99 Li p.f.u. (lithiophilite) to 0.75 Li p.f.u. (sicklerite). These values are in good agreement with the values measured by SIMS.

Keywords: lithiophilite, sicklerite, olivine-type phosphates, crystal structure

FA2-MS16-P31

Invariant relations between the moduli squares of reciprocal lattice vectors. Rolf Heinemanna, 6Diedrich Stöckelmanna, Herbert Krollb, Wolfgang Hoffmann.

aInstitut für Mineralogie, WWU Münster.

E-mail: rhein_03@uni- muenster.de

A system of 1-, 2- and 3-dimensional metrically independent relations between the squared moduli of reciprocal lattice vectors (Q values) is developed. The relations generalize and thereby resolve the earlier special Runge-de Wolff approach to indexing unknown powder patterns. Given the background of trial-and-error-methods employed in recent automatic powder pattern indexing, we suggest an alternative route based on a generalization of the original Runge-de Wolff approach. \cite{1}, \cite{2}, \cite{3}. For this purpose, a system of five metrically invariant relations between the Q values of reciprocal lattice vectors is developed that encompasses the earlier special relations. The five invariant relations correspond to a line, a zone, a bizone, a cone and a pencil configuration. In particular, the zone configuration relates four vectors \(H_i \) being arbitrarily distributed in a plane. The respective equation reads

\[
\sum_{i=1}^{4} \frac{Q_{ij} - Q_{ik}}{Q_{ij}} + \sum_{i=1}^{4} \frac{Q_{ij} - Q_{ik}}{Q_{ij}} = 0
\]

where \(\eta, \kappa \) are rational coefficients. Equation (1) combines any four lattice vectors extending from the zero point that span a plane (Fig. 1). It is a powerful equation because systematic variation of the coefficients \(\eta \) and \(\kappa \) allows to identify among a measured set of Q values any four reciprocal lattice vectors that are arbitrarily distributed in a plane rather than representing a special configuration. The equation may thus be termed the general planar indexing equation and as such it is suited to become a cornerstone in an indexing procedure that in contrast to the current indexing programs would be strictly based on metrical invariants.

![Figure 1: Zone configuration](image)

Keywords: reciprocal lattice geometry, metrical invariants, powder pattern indexing

\cite{1} \cite{1} Runge, C., Phys. Zeitschr., 1917, 18, 291-301. \cite{2} Wolff, P.M. de, Acta Crystallogr., 1958, 11, 664-665. \cite{3} Wolff, P.M. de, Advances in X-Ray Analysis, 1963, 6, 1-17.

Keywords: reciprocal lattice geometry, metrical invariants, powder pattern indexing

26th European Crystallographic Meeting, ECM 26, Darmstadt, 2010