Keywords: Halogen Bonding, Molecular Assemblies, Interpenetrated Networks

FA4-MS26-P23

The co-crystallization of trimethoprim with glutarimide derivatives by means of molecular recognition. C. Q. Ton and E. Egert, Institute of Organic Chemistry and Chemical Biology, Goethe-University, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany
E-mail: egert@chemie.uni-frankfurt.de

Trimethoprim is an API which is used against bacterial infections and inhibits dihydrofolate reductase [1]. It shows activity with barbiturates [2]. The necessary donor/acceptor groups for the complexation with glutarimide derivatives which have been selected for co-crystallization experiments because of their structural similarity with barbiturates [2]. The co-crystallization of trimethoprim with glutarimide derivatives (glutarimide [I], 3,3-dimethyl glutarimide [II] and 3,3-tetramethylene glutarimide [III]) have been successfully synthesized. All these complexes show the expected hydrogen-bond pattern (ADA/DAD with A = acceptor and D = donor). Additional N-H...N hydrogen bonds between trimethoprim molecules lead to a diverse arrangement in the crystal packing. Complex I crystallized in P2₁/n with one complex in the asymmetric unit while complexes II and III crystallized in P-1 with one and two complexes in the asymmetric unit, respectively. The structure of complex I is characterized by the formation of rings between two complexes (generated by inversion) through N-H...O (methoxy) interactions (R₁(20) ring in graph-set notation). The ring units are further interconnected with each other by N-H...N hydrogen bonds. The complexes II and III show similar hydrogen-bond interactions and crystal-packing arrangements. In both cases three classical hydrogen bonds connect the glutarimide with the pyrimidine-2,4-diamine fragment of trimethoprim. These complexes are centrosymmetrically bridged through a pair of N-H...N hydrogen bonds, involving the two amino groups and the pyrimidine ring nitrogen. A thorough analysis of the hydrogen bonds in each crystal as well as the differences and similarities in the crystal packing within these three complexes will give insight into the design of co-crystals. Furthermore, a comparison of the conformations of trimethoprim in different structural environments demonstrates its conformational flexibility [3].

FA4-MS26-P24

E-mail: phvr@up.ac.za

The focus of this study was to investigate the nature of molecular donor-acceptor interactions in the solid state, using spectroscopic techniques such as IR, Raman and X-ray crystallography. Complexes of para disubstituted and 4-mono-substituted biphenyl formed with 4,4′-dinitrobiphenyl (DNBP), demonstrate intense colours, from pale yellow to dark red, upon formation. These colours are dissimilar to the colour combination of the parent compounds. Typical interactions observed in such molecular complexes include π-π interactions, hydrogen bonding, charge transfer and van der Waals interactions. Complexes of DNBP, as the host molecule, included a variety of mono- and disubstituted biphenyl donors or guests, such as dihalo, diamino, di- and monohydroxy groups[1], as well as urea with a 1:1 host:guest ratio [2] and thiourea with a 7:6 ratio. Molecular complexes formed between DNBP with difluorobiphenyl with a 3:1 ratio and DNBP with dibromobiphenyl and diiodobiphenyl, both with 4:1 ratios, showed similar packing styles. The crystal structures of these complexes showed retention of the non-planar conformation of DNBP with a dihedral angle between the phenyl rings of around 35°[3]. However, the dihedral angle between the phenyl rings of the difluoro-, diodo- and dibromobiphenyl in these complexes indicate that these guests are essentially planar. The conformation for DNBP has also been confirmed using density functional theory (Guassian03) calculations that showed good agreement between the theoretically calculated and experimentally observed IR and Raman spectra in the solid state. It appears as if the packing of the complexes in the solid state is directed mainly by the similar packing of DNBP units in these complexes. Some of the molecular ratios for these complexes that vary, depending on the electronic properties of the donor molecules, were determined using NMR spectroscopy.