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Precise and convenient crystal reorientation is of experimental importance in

macromolecular crystallography (MX). The development of multi-axis goni-

ometers, such as the ESRF/EMBL mini-�, necessitates the corresponding

development of calibration procedures that can be used for the setup,

maintenance and troubleshooting of such devices. While traditional multi-axis

goniometers require all rotation axes to intersect the unique point of the sample

position, recently developed miniaturized instruments for sample reorientation

in MX are not as restricted. However, the samples must always be re-centred

following a change in orientation. To overcome this inconvenience and allow the

use of multi-axis goniometers without the fundamental restriction of having all

axes intersecting in the same point, an automatic translation correction protocol

has been developed for such instruments. It requires precise information about

the direction and location of the rotation axes. To measure and supply this

information, a general, easy-to-perform translation calibration (TC) procedure

has also been developed. The TC procedure is routinely performed on most MX

beamlines at the ESRF and some results are presented for reference.

1. Introduction

Multi-axis goniometers have long been common in both the

realm of small-molecule crystallography as well as in the early

years of macromolecular crystallography (MX), as summar-

ized by Helliwell (1992). Early devices were limited by the risk

of potential collisions with other beamline elements, resulting

in their replacement by single-axis goniometer setups on

modern beamlines. A renewed focus on miniaturization and

collision prevention has led to the development of devices that

integrate seamlessly with many positioning systems designed

for MX (McCarthy et al., 2009; Wang et al., 2008; Jain &

Stojanoff, 2007; Shi et al., 2006; Skinner & Sweet, 1998). As a

result, the use of multi-axis goniometry in MX has risen

steadily in recent years. By greatly expanding the range over

which a given sample can be reoriented, multi-axis goniometer

systems provide additional freedom in the design of diffrac-

tion experiments. More importantly, they solve a number of

orientation-related problems that are often insurmountable

on single-axis setups (Bricogne et al., 2005).

One such problem in MX is radiation damage (Blake &

Philips, 1962), which has proven to be a major driving factor

behind a great deal of recent innovations in MX because of its

role in undermining MAD (multiple-wavelength anomalous

dispersion) experiments (Hendrickson, 1991). Aligning an

even-fold (2�, 4�, 6�) symmetry axis along the spindle allows

one to record Bijvoet pairs (a reflection and the Friedel pair of

its symmetry equivalent, e.g. hkl and hkl) on the same

diffraction image. This will not overcome radiation damage;

however, it minimizes the radiation-damage-induced non-

isomorphism within these Bijvoet pairs, resulting in more

accurate anomalous differences. This method can also be

performed on single-axis goniometers or non-automated

multi-axis instruments, but limitations in available rotational

degrees of freedom limit its usefulness. This is due to the

difficulties in properly aligning the twofold symmetry axis of a

sample along the spindle axis (Dauter, 1999).

Dauter also discusses the most common problems asso-

ciated with complex structures containing large unit-cell axes,

leading to reflection overlaps that occur when using an oscil-

lation method. In such cases, aligning the densest reciprocal-

space vector (commonly corresponding to the longest unit-cell

axis) along the spindle is often advantageous. Note that the

cell alignment can result in a blind zone (Dauter, 1999), which

does not allow for the collection of a full data set in such an

orientation. Finding a slightly tilted alignment where the full

data set can be collected while the long axis approaches the

spindle as much as possible is a good compromise, but such a

precise realignment is only possible in many cases with a

multi-axis system. A less elegant but commonly used alter-
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native is to manually bend the pin on which the sample is

mounted, but such an approach is risky and not optimal or

amenable for automation.

The greater rotational freedom afforded by multi-axis

systems is useful with respect to phasing strategies as well.

Substantial dichroism and anisotropy in resonant scattering in

X-ray data collected from selenated proteins near the Se K

edge have been noted by Bricogne et al. (2005). They have

subsequently proposed a methodology for optimizing the

anomalous phasing signal obtained from single- or multiple-

wavelength anomalous diffraction (SAD, MAD) experiments

based on a crystal alignment relative to the incident-beam

polarization and the spindle orientation (Schiltz & Bricogne,

2008, 2009; Joosten et al., 2009).

These studies, as well as reference-beam diffraction

measurements (Pringle & Shen, 2003; Shen, 2003), present

compelling arguments for the use of multi-axis goniometers,

which all rely on an accurate and precise knowledge of the

direction vectors of the goniometer rotational axes.

The � goniometer is one of the most common types of multi-

axis goniometer used in diffraction studies today. In the case

of such an instrument, the axes rotating the sample carry one

another. For the three-axis case, they are called !, � and ’,

where ! carries �, which in turn carries ’ (Paciorek et al.,

1999). Traditional �-axis goniometer systems describe a

centring alignment system on the ’ axis and assume that all

the rotation axes intersect a unique point along the X-ray

beam (see Fig. 1a). When using the centring alignment system,

any given sample can be centred at an arbitrary datum (!, �,

’) by moving it to this unique point. This setup thus guaran-

tees that, if all hardware is properly aligned, the sample will

remain centred during any subsequent rotation. In the case of

an inaccurate system in which the axes do not intersect at a

unique point, the centring must be done about the axis of data

collection, which should also be aligned to intersect the beam

at that point of centring. Although multiple-axis data collec-

tion is not supported by such a setup, each axis can be scanned

one at a time following realignment and re-centring. Minia-

turized true-kappa-geometry goniometers are available at the

Structural Biology Center at the APS (Rosenbaum & West-

brook, 1997) and at the Australian Light Source.

Inverse-� systems (Fig. 1b) address some of the potential

problems with multi-axis systems by moving the centring

device out from behind the final rotation axis and in front of

the reorientation axes (�, ’). The ESRF/EMBL-developed

mini-� goniometer head (MK3) is one such system (Fig. 2).1 It

has been specifically designed for use with 22 mm European

SPINE standard cryopins (Cipriani et al., 2006). On spatially

limited MX beamlines, the MK3 provides a good balance

between reorientation possibilities and collision avoidance.

When mounted on a single-axis host goniometer, the mini-�
head offers most of the functionality of a traditional � or

three-circle goniometer without the risk of collision inherent

to such devices. The MK3 is composed of a motorized ’ shaft

mounted on a motorized � arm, which in turn is mounted on

the ! axis or data-collection spindle of a single-axis goni-

ometer designed for MX with centring and alignment features.

Rotation about the � axis is limited to the range [0�, 260�].

When mounted on a diffractometer such as the MD2

(MAATEL, Voreppe, France) (Perrakis et al., 1999), the angle

between the ! and � axes is 24�, and the ! axis is parallel to

the ’ axis. Similar inverse-� devices have also been developed

for MX beamlines (Shi et al., 2006; Glettig et al., 2009).

The use of multi-axis goniometers for high-accuracy

reorientation is only reliable if all of the direction and location

vectors of the rotation axes are precisely known. The assess-

ment of the misalignment in the direction vectors and subse-

quent calibration has been addressed by Paciorek et al. (1999).

In the case of inverse-�-axis goniometers, an additional level

of complexity must also be addressed in order to define the

location vectors. When centring a sample onto the ! axis, the

reorientation axes (� and ’) are also translated and will not

meet at the centring point. As a direct consequence, every

reorientation must be followed by a translational re-centring

to keep the sample in the axis of the beam. This design does

not offer a unique point of intersection for all of the rotation

axes, and the multi-axis goniometer head must be supported

by a reliable translation stage as a result. One’s ability to

perform sample positioning is thus limited by the reliability,

accuracy and precise configuration of the motors responsible

for translational motion.

A variety of different industrial solutions have been

developed for calibrating and adjusting goniometer systems.

The choice of method is determined by the precision and

accuracy required for the experiments. Interferometry- (e.g.

LP30 from FEANOR, Tallinn, Estonia), capacitance- (e.g.
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Figure 1
In the case of a traditional � system (a), the alignment carriage moves the
perfectly adjusted goniometer along different directions to meet the
beam (red), the focal plane of the centring view (orange) by the ’ and !
axes, and the centring point by the � axis (blue). The three-dimensional
centring stage is then used to move the sample to the centring point. In
the case of an inverse-� system (b), the centring stage is placed between
the ! and � axes, allowing for miniaturization of the instrument and
reducing the risk of collisions during operation. Since the blue direction
of the alignment carriage for adjusting the � axis is no longer used, re-
purposing it for sample centring reduces the scope of the centring stage to
two dimensions, allowing a further miniaturization as implemented in the
ESRF/EMBL mini-� system.

1 A supplementary stereogram image for three-dimensional visualization is
available from the IUCr electronic archives (Reference ZM5081). Services for
accessing these archives are described at the back of the journal.



Elite CPL290 from LION Precison, St Paul, MN, USA) and

microscopy-based tools have all been implemented for

different systems based on such constraints, and each requires

a dedicated instrumentation setup. Here we present a

microscopy-based method that takes advantage of standard

MX instrumentation and already-implemented projection-

based algorithms [i.e. automatic or three-click centring for

single-axis goniometer heads (Lavault et al., 2006; Jain &

Stojanoff, 2007)] to allow for rapid calibration of inverse-�
goniometer systems such as the MK3. This method balances

the general requirement in MX for spatial resolution of the

order of several microns with the practical need for a repea-

table calibration technique that is easily performed, either

manually or automatically, on current hardware in a matter of

minutes. While more rigorous calibration is certainly neces-

sary on occasion, for example during goniometer commis-

sioning, the time required to perform such procedures

interferes with beamline administration and such methods are

thus only feasible during downtime. The calibration procedure

presented here is flexible and can be scaled up to meet such

demands.

The current scheme for calibrating the mini-� goniometer

system relies on a translation calibration (TC) method that

allows for the determination of the direction and location of

the rotation axes required to maintain the sample position

over the course of a reorientation. This paper addresses the

TC method, outlines a specific technique developed for use on

the beamlines, and provides practical suggestions for ways to

ensure that a proper calibration has been performed. It also

discusses how to diagnose potential systematic problems in the

components of the sample-positioning system responsible for

such translational movements.

2. Methodology

TC of the inverse-� system provides a description of the

direction vector d0
� and location vector t0

�� 2 K;�f g of the �-

and ’-rotation axes in a zero-valued

goniometer setting. The location vector

is defined in the space of the motorized

translation-stage axes X;Y;Z and

provides the motor positions needed to

move a given point-like object to an

arbitrarily defined reference point in

real space. By choosing the reference

point on the ! axis, the translation-

space coordinates become independent

of the actual ! position. Furthermore,

in the special case when the reference

point is chosen as the intersection of the

! axis and the beam where the sample

is normally placed during the diffrac-

tion experiment, then moving the

point to this reference simply means

centring the given point. As such, the

translation-space coordinates of a given

point can be measured by retrieving the

translation motor positions after centring the point in ques-

tion. Note that although the point occupied by a mounted

sample is rotating in real space when the ! axis is turned, its

place in translation space does not change because the

translation stage stays at the same settings and rotates toge-

ther with the point. When �- and ’-rotation settings are non-

zero and a  2 f�; ’g rotation is applied on any of those axes,

the location of the sample in the translation space changes as

well.

2.1. Translation correction

Now assume a point-like sample at location vector t 1
being

centred at the  1 setting of one rotation axis while the other

rotation-axis positions are zero valued. The transformation to

the new location vector t 2
corresponds with rotation to the

new angular position  2. This may be calculated assuming

perfect rotation in three-dimensional Cartesian space (Fig. 3)

as

t 2
¼ t0

� � Rd0
�
; 2� 1

t0
� � t 1

� �
; ð1Þ

where Ra;� is the matrix representation of the rotation about

the unit-length vector a by the angle �. Note that the location

vector t0
� of the rotation axis is given by the translation motor

positions when the rotation axis � held by the translation

stage is crossing the centring reference position, that is, at the

intersection of the ! axis and the beam.

The translation correction �t� necessary to maintain

centring while rotating about � 2 K;�f g can thus be calcu-

lated as

�t� ¼ t 1
� t 2

: ð2Þ

In a � system, the � arm holds the ’ axis, and the direction and

location vectors of the ’ axis therefore depend on the angular

position of the � axis. Knowledge of the direction and location

vectors at � = 0� and ’ = 0� thus permits the calculation of the

new translation vector even after a complex movement
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Figure 2
EMBL/ESRF mini-� goniometer head (MK3) following the inverse-� design as mounted on the
MD2M goniometer of the MX beamline ID14-4 at the ESRF.



combining multiple rotations about both the � and ’ axes

[from !; �1; ’1ð Þ to !; �2; ’2ð Þ]. The new translation vector can

be expressed by following the sequence of rotating back the �
axis to 0�, applying the ’ rotation and finally rotating � to its

new position as

t !;�2;’2ð Þ ¼ t0
K

� Rd0
K
;�2

t0
K � t0

� � Rd0
�
;’2�’1

t0
� � t0

K � Rd0
K
;��1

t0
K � t !;�1;’1ð Þ

h in o� �h in o
:

ð3Þ

2.2. Translation calibration

This translation correction calculation requires accurate

information about the direction vectors and locations of the

rotation axes. These can be calculated for each axis by

recording a set of translation points:

P ¼ t 1
; t 2

; . . . ; t j

n o
where  1 < 2 < . . . < j: ð4Þ

The ideal is a circular path as a point-like sample is rotated

about the axis in question. Information about the accuracy of

the system can be derived through statistical analysis of these

points.

The assumptions made about the inherent error of the

system define the approach used to model it. Here, three

general categories describe potential sources of such errors.

(1) Anisotropy of the centring stage is one major source of

non-ideality that encompasses problems related to relative

movements between translation axes. Note that even in the

case of anisotropy, the centring-stage motions are assumed to

be linear. This assumption generally holds in practice.

(1a) Anisotropic scaling relates to the degree to which

movements of the translation stage are interpreted by the

system as real-space displacements. A system with scaling

issues will produce real-space displacements of differing

magnitudes along each axis even though all translation motors

were instructed to move an equivalent amount.

(1b) Another source of anisotropy relates to non-

orthogonality in the coordinate system. If the translation-stage

axes do not move at right angles relative to one another, a

variety of geometric problems will arise.

(2) The second category relates to the alignment of the

coordinate systems in which translation and rotation move-

ments are measured. The rotation-axis direction vectors can

be determined in the space of isotropic translation-stage axes

as well as in the space of a diffraction experiment by a rotation

calibration (Paciorek et al., 1999). If the orientations of the

translation axes are properly aligned in the coordinate system

of the rotation calibration, the two should match.

(3) The third category addresses both the accuracy with

which rotation and translation are performed and the limita-

tions of the visualization system, and thus directly relates to

the accuracy and precision with which a centring is performed.

Such measurement error directly affects the outcome of cali-

bration by defining the precision of the system and is the most

common source of error.

2.2.1. Specific cases. The requisite size of the set of

measured points P thus depends upon the theoretical

assumptions made about the system. If the system is assumed

to be isotropic and aligned with perfect rotation and centring

measurements, only two unique points at two different angular

settings must be measured. Since the direction vector d0
�

normal to the rotation plane can be known a priori from

rotation calibration (Paciorek et al., 1999), only the location of

the rotation axis t0
� that is the centre of the circular path of the

point needs to be determined. In this ideal case, the circle with

a known central angle can be easily determined. Its centre can

be calculated as follows:

t0
� ¼

t 1
þ t 2

� �
2

þ
Rd0

�
;90 t 2

� t 1

� �
2 tan½ð 2 �  1Þ=2�

: ð5Þ

Also note that in the special case of rotating 180� between the

two measurements, the degenerate solution results in the

midpoint of the chord:

t0
� ¼

t 1
þ t 2

� �
2

: ð6Þ

If the alignment of the centring stage itself is no longer

considered perfect and the direction vector is unknown as a

result, three measurements must be made in order to recon-

struct the circle in three-dimensional space assuming that no

other measurement error is present. The unit-length direction

vector can be calculated as follows:

d0
� ¼

t 2
� t 1

� �
t 3
� t 1

� �
t 2
� t 1

� �
t 3
� t 1

� ���� ��� : ð7Þ

The same formulae (5) and (6) can be used to calculate the

location of the axis t0
�, as for the previous case.

If the rotation is not free from angular errors, and so the

angle  2 �  1 is not accurate, the three measurements
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Figure 3
Reorientation of a sample about the � or ’ axis of an inverse-� system.
The sample’s initial position is defined in motor coordinate space by t 1

.
The sample is rotated about d0

�, where � 2 K;�f g, by  2 �  1 (1).
Subsequent translation to the motor position coordinates t 2

restores the
sample to the centre without further changing its orientation (2).



forming a triangle are still enough for the calculation of the

location of the axis by computing the circumcentre as the

intersections of the perpendicular bisectors of the triangle.

2.2.2. Generic case. In the presence of other measurement

errors (e.g. when centring is no longer accurate), the point

continues to trace a circular path due to the isotropy in the

positioning stage. But additional points must be recorded to

accurately fit a circle with such an inaccurate data set in three

dimensions. If the random measurement error is sufficiently

small relative to the radius of the circle, it can be averaged out

by considering more points during circle fitting, as discussed

below.

At least six points are required in the case of an anisotropic

centring stage with accurate centring. Additional points must

be collected in the case of an anisotropic centring stage with

some error in the centring measurements.

(a) Plane fit. Ideally, each point falls on the same rotation

plane P, but this assumption cannot be made in reality. As

such, P is fitted to the points in the set P using principal

component analysis (PCA) (Pearson, 1901), as implemented

in MATLAB (MathWorks, 2009; Jolliffe, 2002). An alternative

implementation involves the direct application of singular-

value decomposition (SVD) (Golub & Reinisch, 1971) to the

data for plane fitting. The PCA method returns the principal

component coefficients or loadings required to define a plane

in three dimensions. The first two principal component coef-

ficients represent the basis vectors v and w that lie in P, while

the third principal component n is the normal vector to the

plane. As the direction vector of the rotation axis is also

normal to the plane, it is directly served as

d0
� ¼ n: ð8Þ

Since the mean of the data u ¼ ð1=jÞ
Pj

i¼1 t i
lies in P, the

location of the rotation axis t0
� can be determined after a circle

fit applied in P, as its circumcentre. For this task, the point set

P can be orthogonally projected P0 3 t0 i
onto P by using the

coordinate transformation to the bases v;w; nð Þ given by PCA

and then projecting along the third coordinate:

t0 i
¼

 
1 0 0

0 1 0

0 0 0

!
ð v w n Þ

�1
ðt i
� uÞ: ð9Þ

(b) Ellipse fit. Anisotropic scaling in translation space is

always present to some degree and is particularly evident in

the case of a poorly configured translation stage owing to the

ellipse-shaped path traced by the sample upon rotation.

Detecting such anisotropy is an excellent way to check for

issues with the sample-positioning translation motors, and an

ellipse fit is thus the most useful way to model the system. The

semi-major and semi-minor axes calculated from the ellipse fit

provide information regarding scaling by virtue of their rela-

tive magnitudes. Performing such a fit on a well configured

system will generate axes of nearly equal magnitude, while a

system with a scaling problem produces axes with very

different magnitudes. Note that non-orthogonality of the

translation system also results in an elliptical rotation path.

The way of distinguishing between the two sources is discussed

below.

In order to minimize the likelihood of an incorrect fit in the

case of an automated calibration, a geometric fit of an ellipse

in a parametric form is performed (Gander et al., 1994). This

algorithm uses the Gauss–Newton nonlinear least-squares

approach to minimize the sum of the squares of the distances

of the points in P0 to an iteratively determined ellipse fit. This

yields the parametric ellipse

e0ð�Þ ¼ o0 þ

 
cos � � sin �
sin � cos �

! 
a cos �
b sin �

!
; ð10Þ

where a and b are the magnitudes of the semi-major and semi-

minor axes, respectively, o0 is the centre of the ellipse, � is the

independent parametric angle and � is the tilt angle of the

ellipse in the plane about the centre point.

By applying the inverse of the transformation [equation

(9)], the location of the approaching rotation axis can be

calculated by converting the two-dimensional centre point

coordinates o0 in P back to the original three-dimensional

translation space:

t0
� ¼ uþ v w

� �
o0: ð11Þ

(c) Scale-factor estimation. The relative values of a and b

reveal a great deal about the state of the translation system. A

successful plane and ellipse fit allow for the calculation of the

anisotropic scaling factor for the coordinate system of the

translation stage X;Y;Z. In order to calculate the anisotropy

in the Y and Z axes relative to the X axis, the three-

dimensional scale matrix S ¼ diag sX ; sY ; sZð Þ must be deter-

mined for sX ¼ 1, assuming that axis X is correctly configured.

The anisotropy-caused elliptical path of the point in the

original translation space can be traced by mapping the set of

ellipse points e0ð�Þ for � 2 [0�, 360�] back to three-dimensional

space, while keeping the centre point in the origin:

eð�Þ ¼ ðv wÞ½e0ð�Þ � o0�: ð12Þ

After applying the scaling correction, the data points lie on a

circle, with a constant radius r. Hence, a series of equations can

be set

½Seð�Þ�2 ¼ r2; ð13Þ

and solved using a linear least-squares approach. It provides

the unknown diagonal elements of S ¼ diag sX ¼ 1; sY; sZð Þ

that describes the scaling of the Y and Z axes.

However, non-negative constraints must be applied, as a

negative scale factor is geometrically prohibited when

assuming a right-handed orthogonal translation space. A

standard error of regression higher than the expected

measurement errors can highlight the presence of non-

orthogonality in the system. The misalignment of the axes can

be addressed by solving the same set of equations (13), but this

time replacing the unknown scale matrix by an unknown base-

transformation matrix.
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(d) Measure of error. The scale factors are dimensionless

and only provide relative information on the state of the

system. If the observed ellipse is scaled to a circle by the

appropriate scale factors, a linear distance error can be

calculated. First, assume a nearly perfect position after scaling

of some originally measured point in P. Let this point be P1 at

the angular setting  1. Corresponding to a new setting  2,

rotate this point about the calculated axis to its expected new

location P02. Let the position after scaling the measured point

in P at  2 be P2. The three-dimensional distance between the

expected P02 and measured P2 locations defines the linear

distance error �trans (Fig. 4). These errors represent real

distances if the translation stage X is properly configured as

assumed when defining scale factor sX as unity. Hence, the

linear distance errors indicate the expected accuracy of the

translation correction.

Now, let the orthogonal projection of the point P2 on a

circle in the regression plane be P002. The angular difference

between P02 and P002 defines the angular error of that

measurement �rot (Fig. 4). Systematic analysis of these

measurement errors can point out specific problems, like

issues related to backlash, slipping or improper scaling

configurations as discussed below.

3. Discussion

The calibration method described in theory has been imple-

mented in the goniometer-controlling software STAC

(STrategy for Aligned Crystals). In practice, the calibration

described above takes little time to perform on the beamline.

This is especially true when combined with STAC, which

offers a manual, guided or automatic solution for goniometer

calibration. Such calibration can be performed as follows:

(i) Initialize and home the goniometer axes such that

(!, �, ’) = (0�, 0�, 0�), and align the ! axis.

(ii) Perform centring (for example, using the on-axis

microscope of an MD2 to avoid parallax error) on a well

defined reference point that is clearly recognizable at all

varieties of angles. After centring, the translation motor

positions are registered such that t 0¼0�� 2 K;�f g.

(iii) Separately perform the following steps for the � and ’
axes, with the other set at 0�:

(a) Rotate about the given axis by an arbitrary angle �.

(b) Re-centre the reference point such that the translation

position corresponding to the rotation is registered as t i¼�
.

(c) Repeat (a)/(b) at least once more if the direction vector

is not known from a priori rotation calibration. In automatic

mode, STAC repeats the procedure five more times, recording

a total of six unique points evenly distributed and paired with

another point 180� away.

(iv) If scale factors for a given axis are not equal to unity,

adjust hardware or compensate for scaling in control software

to remove anisotropy from the system configuration.

The accuracy of the calculations derived from the TC

procedure above is completely dependent on the ability of the

operator to perform the requisite centring steps in a consistent

fashion that minimizes measurement

error. A special pin based on the

SPINE standard (Cipriani et al., 2006)

has been designed in order to improve

the centring accuracy and precision by

overcoming problems related to the

visualization of the point to be centred

as it rotates out of the narrow focal

plane at high magnification (Fig. 5).

One may construct such a pin for TC by

gluing a 10 mm-diameter polystyrene

bead (Microbeads AS, Norway) to

the tip of a borosilicate glass needle

mounted on a crystal support. The

capillary tube used to make the needle

must have an inner diameter of around

0.8 mm to properly fit over the micro-

tube on the support, and the needle
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Figure 4
Calculation of linear and angular reconstruction errors. p1 is the scale-
corrected location of a measured point at the angular setting  1. p2 is
similarly at the angular setting  2. Assuming p1 is correctly measured at
 1, the expected location at  2 is shown as p02. The three-dimensional
distance between the expected (p02) and measured (p2) locations supplies
the linear error �trans. The projection of the measured point p2 to the circle
in the regression plane is shown as p002. The angular difference between the
expected and measured rotation provides the angular error (�rot) of the
measurement. Sample values of �rot and �trans are listed in Table 1.

Figure 5
Schematic of a glass pin with bead. Images show a 10 mm polystyrene bead on a glass micropipette
rotating 360� about the ’-axis post-centring. The bead has a greater diameter than the glass needle
and allows for a clear visualization at all angles, thus ensuring precise centring.



must be pulled such that the outer diameter at the tip is

around 5 mm. Conventional devices used to pull needles for

Xenopus oocyte microinjections work well. Altering from the

SPINE standard, one can glue the base of the capillary to the

microtube at a slight angle. By leaving it shorter or longer than

the specification, the path traced by the bead will be larger and

thus easier to fit, dramatically improving the precision with

which centring can be performed. Furthermore, with a large

enough difference between the diameter of the needle tip and

the diameter of the bead, centring will be possible even when

the � arm is set to a large angle where a typical sample would

be obscured. This is a critical shortcoming of previous stan-

dards used for calibration, such as capillary tubes or

acupuncture needles affixed to a sample support base. Both

types of pins often feature excellent points for visual centring,

but opening the � arm results in their obstruction by the rest of

the system. The precision with which manual centring is

performed is also improved by incorporating a circular-shaped

reticule into the centring software which is scaled to the on-

screen size of the bead. This allows for precise identification of

the bead centre at all orientations and even at locations

outside the focal plane of the visualization system. Automated

centring is possible using edge-detection or circle-shape

recognition. An algorithm to perform reliable centring has

already been implemented in the crystal centring software

C3D (Lavault et al., 2006).

One aspect of the TC method presented here that illustrates

its versatility is the speed with which the calibration can be

performed. Using automated centring, the calibration can be

performed automatically in less than 15 min. Although

increasing the number of points sampled around the rotational

path of the sample increases the accuracy of the subsequent

calculations, only three evenly distributed pairs of points

separated from one another by 180� must be collected for

rotations about any rotation axis for the ellipse-fit algorithm to

work in a robust manner (Fig. 6). The accuracy of the ellipse fit

is evaluated based on the stability with which the scale factors

are provided. Collecting an additional three pairs for a total of

12 points is recommended for more precise calibration, as the

influence of outlying points is decreased substantially. Outlier

detection and elimination algorithms like the confidence

coefficient assignment or inward procedure summarized by

Ben-Gal (2005) could reduce the number of data points

needed. Calibration data for the � axis should be collected in a

similar fashion, although pairs may not be available for points

over a certain interval because of possible collisions or

instrument limitations. For the EMBL/ESRF MK3, points in

the interval [80�, 180�] cannot have pairs, because the � arm is

limited to a maximum of 260�.

An implementation of the method described above can be

used to rapidly process TC data and produces statistics similar

to those presented (Table 1).

Data were measured using an EMBL/ESRF mini-� goni-

ometer head (MK3) installed on an MD2M diffractometer on

ID14-4 at ESRF (McCarthy et al., 2009). Motor positions were

recorded every 5� following the re-centring of a mounted

calibration bead (see Fig. 5) while rotating about the ’ axis

over the range [0�, 360�] followed by the � axis over the range

[0�, 240�]. The measured data are shown in Fig. 7. The data for

presenting statistics on a misconfigured system (Table 1b)

were produced by artificially introducing 10:7 anisotropy in

the Y-motor configuration. Note that the identical motors X

and Y are from the two-dimensional centring stage, while the

motor Z translating along the ! axis is part of the three-

dimensional alignment carriage.

The plane fit shows submicron deviations of the data from

an ideal planar rotation in all cases. The error is even less

pronounced in the case of the ’ axis, as it is mechanically

less strained than the � axis and mainly rotates in the XY

plane (see Fig. 7). Hence, the errors contributed from the

independent Z motor are insignificant. The normal vectors of

the best-fit planes are (�0.0094, 0.0045, �0.9999) and

(�0.2903, �0.2887, 0.9123) for ’ and �, respectively. The

angle between these normal vectors should always be

around 24� in the case of the MK3. Deviation from such

nominal value (Fig. 2) can indicate the presence of a scaling

problem in the translation motor configurations. Note that

MK3 is designed as a re-mountable goniometer head, and as
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Table 1
Statistics returned from processing TC data collected with the mini-� (MK3) on ID14-4 at ESRF.

The root-mean-square deviation (RMSD) of the plane fit together with the maximum absolute deviation (MAX) shows the goodness of fit. From the ellipse fit of
the planar data, the distance (jo0j) between the mean of the data (the origin on the two-dimensional plane) and the centre of the ellipse (o0), as well as the lengths of
the semi-major and semi-minor axes a and b are presented. The scale factors sXYZ along each ordinate calculated from the ellipse fit relate the appropriate scaling
needed to transform the rotation path into a circle. The radius r is provided by a circle fit for the scaled data. RMSD and MAX of the linear distance errors �trans

and angular errors �rot are shown to describe their distribution and relate the overall calibration state of the system. The values in (a) suggest a well calibrated
system. The ellipse fit yields a nearly circular path, and very little scaling is required to transform the data. Errors are within the limitations of the system. The data
in (b) were produced by artificially introducing 10:7 anisotropy in the Y axis relative to the X axis to simulate an error in sample-positioning motor configuration.

Axis Plane fit Ellipse fit (two-dimensional) Scale factors Scaled circle fit Scaled errors

RMSD (MAX) (mm) jo0j (mm) a (mm) b (mm) sXYZ r (mm) �trans RMSD (MAX) (mm) �rot RMSD (MAX) (�)

(a)
� 0.85 (1.86) 398.9 1025.7 1021.6 (1 1.0007 1.0239) 1026.1 9.06 (14.19) 0.48 (0.78)
’ 0.66 (1.75) 19.5 674.7 669.8 (1 1.0074 —) 675.0 3.57 (6.58) 0.26 (0.54)

(b)
� 0.84 (1.84) 380.5 1024.0 747.4 (1 1.4299 1.0237) 1026.2 9.03 (14.19) 0.47 (0.78)
’ 0.65 (1.73) 17.3 674.6 468.9 (1 1.4387 —) 674.9 3.57 (6.65) 0.26 (0.54)



such does not have additional nominal parameters for the

location and orientation of axes. In contrast, comparison to

previous calibration results can help in identifying potential

problems.

Before the ellipse fit, data are orthogonally projected onto

the fit plane and converted to a set of two-dimensional points.

The origin of the coordinate system in the plane is chosen to

be at the mean of the data. By measuring pairs 180� apart, the

mean of the data should fall close to the centre of the ellipse

fit. Large distances of almost 400 mm in the case of the � axis

result from the fact that the data points were not collected in

such pairs (see Fig. 7). While the difference between the radii

of the ellipse fit in Table 1(b) suggests a potential misconfi-

guration of the motors, data in Table 1(a) illustrate a more

balanced system.

Projecting the ellipse back to the original three-dimensional

space, scale factors are calculated to stretch the ellipse onto a

circular path. Scale-factor calculation reveals the strong

anisotropy introduced into the system in Table 1(b). Note that

even a small inherent anisotropy is precisely computed for the

Z axis using the data about �. The calculated 2.4% scale

correction along the Z axis shows a slight error in the

configuration of the Z motor belonging to the alignment

carriage (see Fig. 1b), but differing from the X and Y motors of

the centring stage. Also note that data collected about the ’
axis do not provide any information regarding the Z axis. As

such, the calculation does not provide a solution in this

degenerate case. After correcting the data for misconfigured

scaling, a simple geometric circle-fit algorithm identifies the

correct circular path in both isotropic and anisotropic cases.
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Figure 6
Error in calculation of scale factors sY and sZ for rotation about the � axis as a function of the number of data used for the ellipse-fit calculation. Points
were recorded at 5� intervals over [0�, 240�] for a total of 49 points. Scale factors were calculated for subsets of these points; for a six-point subset, three
points were chosen randomly from evenly distributed ranges on the rotational path, and the following three were points located exactly 180� away. If a
randomly selected point had no pair (i.e. any point on the interval [60�, 180�]), another point with no pair was selected as well. This random selection and
scale-factor calculation was repeated 100 times for each subset. The means of resulting scale factors are plotted together with the standard deviations as a
function of the number of points in the subsets.



The calculated angular and linear distance errors are also

realistic and consistent with one another in both the isotropic

and anisotropic cases. The angular reproducibility of the MK3

motors has been measured as 0.1� for � and 0.04� for ’, while

the diameter of the maximum sphere of confusion (SOC) for

the whole goniometer including the MK3 head was deter-

mined to be less than 6 mm. Opening the � arm results in a

larger SOC owing to the increased mechanical strain on the

MK (Fig. 2). The distribution of the linear distance errors is an

indication of the precision expected from a translation

correction derived from a TC. Here, their magnitude, as

presented in Table 1, is close to the diameter of the SOC. In

such a setup with precision mechanics, the primary source of

error is due to the centring governed by the SOC. A vertical

goniometer setup resolves this issue, and the SOC of the same

MK3 can be reduced to submicron levels, as demonstrated on

the ID29 and ID23-2 beamlines at ESRF (data not shown).

Although goniometer systems such as the MK3 are quite

robust and undergo very little drift over weeks of activity, the

ease with which TC can be performed makes it an excellent

way to detect occasional instrumentation problems that arise

in hardware or software. The biggest source of such errors

relates not to protracted data collection and general wear and

tear, but rather to the different incremental changes made

intentionally and unintentionally to the sample-positioning

system by users and support staff. Updates to device control

software could also potentially reset previously established

configurations.

The TC procedure yields valuable information which can be

used to address many of these problems. First, the plane fit can

be used to visualize the ideality of sample rotation as it should

always move in a plane. Furthermore, the calculated scale

factors may be used to detect anisotropy in the reference

frame caused by the sample-positioning motors. Note that in

the case of the ’ axis the direction vector of the rotation is

normally set orthogonal to the two-dimensional centring-stage

axes. Incompatible scaling configuration of the two motors can

be directly read out from the ellipse-fit radii. This simple

relationship does not hold in the case of the third axis, for

which a separate step of scale-factor calculation must be

performed from data around �.

The potential problem of a non-orthogonal centring stage

can also arise, especially in systems where the translation

stages are not directly coupled. The combined use of the re-

purposed alignment carriage and a two-dimensional centring

table is such a case. Although the least-squares error deter-

mined during a scale-factor calculation can be indicative of

such a situation, we have not experienced a problem like this

on any of the ESRF MX beamlines equipped with MD2 or

MD2M diffractometers.

In most cases, the system should be sufficiently isotropic

with proper scaling performed by the software, yielding a

sample path that is circular. Once a circle fit has been

performed, additional statistics about the linearity of the

system can be analysed. The linear reconstruction error for a

given axis reveals the accuracy with which the point can be

automatically re-centred in microns, while the angular uncer-

tainty relates to the accuracy with which the rotation is being

performed. These metrics, when compared with the expecta-

tions for a given hardware setup, can highlight underlying

problems, like losing steps, or having a mechanical flaw which

may even vary slightly under different physical constraints.

4. Conclusion

This study provides a simple and robust method for the cali-

bration of an inverse-� goniometer sitting on a translational

positioning system responsible for re-centring a sample.

Following the collection of only a few data, the method

described here can be used to assess and hone the precision of

the given goniometer setup. Beamline-control software solu-

tions like STAC, that implement the calibration procedure,

can be used in combination with automated centring software

like C3D. As a result, TC with a calibration pin and a standard

microscopy-based sample-centring system can be fully auto-

mated. In the case of the EMBL/ESRF-designed mini-�
goniometer, this TC method results in a system that is accurate

to the level needed to perform even the most orientation-

sensitive experiments in MX. Indeed, the calibration is simply

limited by the accuracy with which the centring is performed

with a calibration pin and is thus far more accurate than the

centring performed on a typical sample. Taking advantage of

the calibration results, sample centring can be automatically

maintained across all reorientations (as implemented by

STAC). Furthermore, integrating an automatic translation-

correction procedure with an experiment control system like

MxCuBE (Macromolecular Crystallography Customized

Beamline Environment) (Gabadinho et al., 2010) and the

online data analysis system EDNA (Incardona et al., 2009) can
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Figure 7
Paths traced by � and ’ axes during rotation and accompanying plane fits.
The ’ path lies in the XY plane, while the � path traces a plane in all three
dimensions. Points denoted by green squares fall below the best-fit plane,
while points denoted by red circles lie above the best-fit plane. Statistics
for these plane fits are listed in Table 1(a).



hide the reorientation complexity of inverse-� systems, and

allow their use as pure rotational goniometers.
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