Microsymposia

Function, S,, that gives both the stoichiometry and aspects of the
bond topology of the structures. We may thus write the structure-
generating function, S, for the biopyribole structures as follows: S,
= XMy Py (15,05, ©7,,01},]. This function generates: n = 1,
the pyroxenes; for n = 2, the amphiboles; for n = 3, the triple-chain
pyriboles; for n = 4, S, = X,[M,,¥{T;0,,},]; for n = o, the micas.
Where N = 2, the general form of the T component is {T, 0, .,} which
corresponds to the T component of H-layers in the polysomatic H-
O-H series in which the ribbons are linked laterally by [S]- or [6]-
coordinated cations, D, which have the coordination (D@',®*®!, ).
The general formula for an H layer is [D®*{T, O, , ®%*, @'} ],
where @' after the T component occurs on the outside of the H-layer
and is involved in linkage between adjacent H-O-H sheets. The H-
layer links via its apical anions to the O-layer, giving the general
formula of an H-O-H sheet as [M, ,, DO {T, O, ,,} P"),]. These H-
O-H sheets can link directly through the ®* anions of the (D®',O**d",
) octahedra, giving S, = Xi[Mg,.¥5,(D,®; {T,,05,,})P,,]. This
function generates: for n = 1, the group-1 TS-block structures; for n =
2, the astrophyllite-group structures; for n = 3, nafertisite: ideally Na,
[Fe**,, O,(OH)(Ti,{Si,,0,,)](H,0),.,; for n = co, the micas.

We may combine the two generating functions (above) into a
single function: S,y = X; [Mgnion Yawenz) (Do @Painy 112,00
Ny O, O 1) DY ,,)] that gives all the above structures. This
expression also generates mixed-ribbon polysomatic structures. S,
= X;[M;; ¥ {T,, ®", 0%, O4},] gives the chemical composition and
structure of the mixed-chain pyribole, chesterite: Mg, [Mg,,(OH);
{Si;)0";0%,,04},], and ;1.4 = X [M,;¥,o(D, @, {T,0”"0%,0',}1,{T,O
br 00l 1)@ ] gives the chemical composition and structure of the
mixed-chain H-O-H mineral, veblenite: KNa(H,0),[(Fe**;Fe*" ,Mn,Ca
00) (OH),,(Nb,0, {Si,0,},{Si50,,},)0,].
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Modulation of structures and gas storage properties in MOF
materials

Martin Schréder, School of Chemistry, University of Nottingham,
Nottingham NG7 2RD (UK). E-mail: M.Schroder@nottingham.ac.uk

A range of anionic metal-organic framework (MOF) materials
has been prepared by combination of In(III) with tetracarboxylate
isophthalate ligands. These materials incorporate organic cations,
either H,ppz** (ppz = piperazine) or Me,NH,", that are hydrogen
bonded to the pore wall [1], [2]. These cations act as a gate controlling
entry of N, and H, gas into and out of the porous host. Thus, hysteretic
adsorption/desorption for N, and H, is observed in these systems
reflecting the role of the bulky hydrogen bonded organic cations in
controlling the kinetic trapping of substrates. Post-synthetic cation
exchange with Li" leads to removal of the organic cation and the
formation of the corresponding Li" salts. Replacement of the organic
cation with smaller Li* leads to an increase in internal surface area
and pore volume of the framework material, and in some cases to a
change in the overall network topology and structure [3]. An increase
in the isosteric heat of adsorption of H, at zero coverage has also been
observed on incorporation of Li" ions, as predicted by theoretical
modeling [4], [5], [6]. Furthermore, a new doubly-interpenetrated
network system has been identified in which the second net is only
partially formed (0.75 occupancy; see Figure). This material undergoes
a structural re-arrangement on desolvation, and shows high selective
storage uptake for CO,. The structures, characterisation and analyses
of these charged porous materials as storage portals for gases are
discussed.
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New findings in topological crystal chemistry with TOPOS
Davide M. Proserpio,* Vladislav A. Blatov,® “Universita degli Studi
di Milano, Dipartimento di Chimica Strutturale e Stereochimica
Inorganica, Milano, (Italy). ®Inorganic Chemistry Department,
Samara State University, Samara, (Russia). E-mail: davide.
proserpio@unimi.it

The multipurpose crystallographic program TOPOS [1] has been
used extensively in the analysis of entanglement of coordination
polymers/MOFs and H-bonded supramolecular architectures [2], [3].
Three recent applications will be briefly illustrated.

We formalized the analysis of extended architectures by
successive simplifications in an automated mode that allowed us
to classify all 3-periodic structures from the Cambridge Structural
Database (CSD). Different levels of representations (standard and
cluster) are considered and some application illustrated. [4], [5].

Another new application of TOPOS is in the structural chemistry
of intermetallic compounds, where the crystal structure is perceived
as an ensemble of clusters based on convex polyhedra. We developed
a computer procedure for fast automated searching for cluster
fragments of any complexity in crystal structures of any nature[6].
The occurrences of two-shell clusters with the first shell as a Frank-
Kasper polyhedron Z12 (dodecahedron), Z14, Z15, or Z16 (Frank-
Kasper nanoclusters) will be briefly illustrated.

This latter approach has been extended in the study of zeolites,
and from our result of description of all zeolites as natural tiling
[7], we were able to develop a model of assembling zeolite-type
frameworks as a packing of natural building units (minimal cages)
or essential rings (minimal windows).

[1]1 V.A. Blatov, IUCr CompComm Newsletter 2006, 7, 4-38; http://www.
topos.ssu.samara.ru. [2] V.A. Blatov, L. Carlucci, G. Ciani, D.M. Proserpio
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G. Ciani, D.M. Proserpio Crys. Growth Des., 2008, 8, 519-539. [4] EV.
Alexandrov, V.A. Blatov, A.V. Kochetkov, D.M. Proserpio CrystEngComm
2011, DOI:10.1039/COCE00636J. [5] V.A. Blatov, D.M. Proserpio, Ch. 1 in
Modern Methods of Crystal Structure Prediction, ed. A.R. Oganov, Wiley-
VCH, Weinheim, 2011. [6] V.A. Blatov, G.D. Ilyushin, D.M. Proserpio /norg.
Chem. 2010, 49, 1811-1818. [7] N.A. Anurova, V.A. Blatov, G.D. Ilyushin,
D.M. Proserpio J. Phys. Chem. C, 2010, 114, 10160-10170.



