Gas Chromatography. XRD powder patterns were collected on zeolites before and after adsorption on a Bruker D8 Advance diffractometer. Thermal analyses (TG and DTA) were performed in air up to 900°C at 10°C/min.

The experimental results prove that the kinetic of adsorption of all components is fast and indicates that competition exists between the organic compounds at low cosolute concentrations.

Rietveld refinements indicate that the relevant incorporation of DCE, MTBE and TOL in the organophilic zeolites causes significant increase of all unit cell parameters in comparison to those of the untreated material as well as strong distortions of the channel systems where the contaminants are hosted. The very favorable adsorption kinetics along with the effective and highly irreversible adsorption of DCE, MTBE and TOL molecules into zeolite pores make this cheap and environmental friendly material a tool with interesting applications for the removal of hydrocarbons from wastewater.

 A.R Gavaskar, B.C Kim, S.H Rosansky, S.K Ong, E.G. Marchand, Environmental Progress 1995, 140, 33–40. [2] D.Z.Chen, J.X. Zhang, J.M. Chen, International journal of Environmental Science and Technology 2010, 7, 235-242. [3] L.Abu-Lail, J.A. Bergendahl, R.W. Thompson, Journal of Hazardous Materials 2010, 178, 363-369.

### Keywords: organophilic zeolites, X-ray diffraction, adsorption

## MS.25.2

Acta Cryst. (2011) A67, C68

# Synthesis and structures of new layered and framework anion exchangeable hydroxides

Andrew M. Fogg, Department of Chemistry, University of Liverpool, Liverpool, (U.K.). E-mail: afogg@liverpool.ac.uk

New anion exchangeable intercalation compounds with either lanthanide hydroxide layers or lanthanide oxyhydroxide cationic inorganic frameworks have been synthesised. The layered materials have the general composition  $Ln_2(OH)_5X.nH_2O$  (Ln = Y, Gd – Lu; X = NO<sub>3</sub>, Cl, Br) and have been shown to be flexible intercalation hosts undergoing anion exchange reactions with a wide range of organic carboxylates and sulfonates. [1], [2] Structural characterisation of the halide intercalates has shown them to comprise 8 and 9 coordinate lanthanide cations within the  $[Ln_2(OH)_5]^+$  layers with bridging hydroxide anions and coordinated water molecules making up the coordination sphere.

Time resolved in situ X-ray diffraction studies of the synthesis of these materials have shown that their mechanism of formation is complex with four distinct phases being identified and isolated.[3] Three of these phases are layered intercalation hosts with the layer composition  $[Yb_2(OH)_s]^+$  with differing interlayer separations controlled by the level of hydration. The fourth phase is  $Yb_4O(OH)_9NO_3$  which has a 3D structure with 1D channels which contain the nitrate anions and as such this system represents a rare case where a 2D material has been observed to transform to a 3D structure. For the halide materials a different framework material,  $Yb_3O(OH)_6Cl.2H_2O$  which has much larger channels is formed.[4] In this material the chloride anions and is therefore the first anion exchangeable hydroxide framework material. Additionally the framework is stable up to 200 °C and can be reversibly dehydrated.



Figure 1 In situ diffraction pattern of the synthesis of  $Yb_4O(OH)_9NO_3$  showing the intermediate layered phases  $Yb_2(OH)_5NO_3.nH_2O$ .

L. Poudret, T.J. Prior, L.J. McIntyre, A.M. Fogg *Chem. Mater.* 2008, *20*, 7447.
L.J. McIntyre, L.K. Jackson, A.M. Fogg *Chem. Mater.* 2008, *20*, 335.
L.J. McIntyre, T.J. Prior, A.M. Fogg *Chem. Mater.* 2010, *22*, 2635.
H.V. Goulding, S.E. Hulse, W. Clegg, R.W. Harrington, H,Y, Playford, R.I. Walton, A.M. Fogg *J. Am. Chem. Soc.*, 2010, *132*, 13618.

#### Keywords: framework, hydroxide, exchange

### MS.25.3

Acta Cryst. (2011) A67, C68-C69

# LHT-9: layered nano-material with reductive adsorption and exchange properties

Wulf Depmeier,<sup>a</sup> Sergey N. Britvin,<sup>a,b,c</sup> Andriy Lotnik,<sup>d</sup> Lorenz Kienle,<sup>d</sup> Sergey V. Krivovichev,<sup>b</sup> Yulia I. Korneyko,<sup>e</sup> Boris E. Burakov,<sup>e</sup> <sup>a</sup>Crystallography, University of Kiel, Kiel, (Germany). <sup>b</sup>Department of Crystallography, Geological Faculty, Saint Petersburg State University, University emb. 7/9, St. Petersburg, 199034, (Russia). <sup>e</sup>Nanomaterials Research Center, Kola Science Center, Russian Academy of Sciences, 184200 Apatity, Murmansk Reg., (Russia). <sup>d</sup>Institute for Materials Science, Synthesis and Real Structure, University of Kiel, Kiel, (Germany). <sup>e</sup>V.G. Khlopin Radium Institute, 2-nd Murinsky Ave. 28, 194021 St. Petersburg, (Russia). Email: wd@min.uni-kiel.de

Layered hydrazinium titanate, LHT-9 for short, is a layered material with a lepidocrocite structure and  $\approx 9$ Å interlayer distance. It has been prepared by a simple one-pot synthesis at near ambient conditions. Its idealized chemical formula is (N<sub>2</sub>H<sub>5</sub>)<sub>0.5</sub>Ti<sub>1.87</sub>O<sub>4</sub>, space group Immm, a  $\approx 3.8$  Å, b  $\approx 18.46$  Å, c  $\approx 2.98$  Å. Under the correct conditions it forms as nano-crystalline material which, however, displays important non-periodic structural characteristics. It has been characterized by various methods, notably high resolution transmission electron microscopy, x-ray diffraction, IR spectroscopy with analysis of gas evolution upon heating, XANES and EXAFS. From the analysis it is clear that LHT-9 consists of bent and deformed nano-flakes with only a few layers thickness, a high concentration of titanyl-groups and Brønsted-sites at the surface, and chemically bound hydrazinium  $(N_2H_5)^+$  in the interlayers. The reductive properties of the hydrazinium and the structural characteristics add to the remarkable properties of LHT-9 and make it a valuable tool kit for many applications. More than 50 elements of the periodic table have been shown to be reduced, adsorbed and/or ion exchanged by LHT-9. Several of these reactions have possible or even proved ecological or economical value, such as removal of toxic or radiactive species from industrial waste waters or combustion gases, or extraction of noble metals from solutions [1].