Multiferroic CuWO₄ under pressure: Comparison of PXRD and SXRD studies

J. Ruiz-Fuertes, A. Friedrich, D. Errandonea, A. Segura, W. Morgenroth, R. Lacomba-Perales, Departamento de Física Aplicada-ICMUV, Universitat de Valencia, Dr. Moliner 50, E-46100 Burjassot, Valencia (Spain), Institut für Geowissenschaften, Abt. Kristallographie, Goethe-Universität Frankfurt, D-60438 Frankfurt am Main (Germany). E-mail: javier.ruiz-fuertes@uv.es

3d-transition metal tungstates are interesting due to their scintillating detection properties and their use for the search of rare events in particle physics. Cuproscheelite (CuWO₄) has been also proposed as a material for the production of positive electrodes of lithium rechargeable batteries. Furthermore, from the fundamental point of view, CuWO₄ has attracted attention as a multiferroic material with an intriguing magnetic phase diagram showing low dimension antiferromagnetism at 90 K; quite above the Neel temperature T_N = 23 K. The Jahn-Teller (JT) effect around the Cu²⁺ ions is responsible for this antiferromagnetic phase. Due to the JT distortion of the CuO₆ octahedra the symmetry of cuproscheelite is lowered from the monoclinic wolframite structure (SG. P2₁/c) to a triclinic distorted structure (SG. P). Based on our optical absorption [1] and Raman spectroscopy [2] studies at high pressure (HP), it has been found that CuWO₄ undergoes a structural phase transition at 10 GPa. Otherwise, ab initio calculations [2] predict a wolframite-like structure for the HP phase. On top of that, according to calculations, the phase transformation involves an antiferromagnetic to ferromagnetic transition and a quenching of the JT distortion. In order to study the compressibility, solve the HP structure, and understand the mechanism of the phase transition, we have performed powder x-ray diffraction (PXRD) under different quasi-hydrostatic conditions up to 20 GPa. Experiments were performed at Diamond and APS synchrotrons. We also carried out single crystal x-ray diffraction (SXRD) at pressures smaller (7 GPa) and higher (13.4 GPa) than the transition pressure. These experiments were performed at HASYLAB synchrotron, Hamburg. Results showed that the compound’s compressibility is affected by the presence of non-hydrostatic stresses. Depending upon the pressure-transmitting medium the bulk modulus of the low-pressure phase ranges from 139 to 171 GPa. We also found that only under non-hydrostatic conditions a second phase transition takes place at 17 GPa.

Keywords: high pressure, x-ray diffraction, jahn-teller

Phase transitions in carbon dioxide at high pressures and temperatures

Brian Boates, Amanuel Teweldeberhan, and Stanimir Bonev, Lawrence Livermore National Laboratory, Livermore, CA, USA. Dalhousie University, Halifax, NS, (Canada). E-mail: boates@gmail.com

We report on the electronic, structural, and thermodynamic properties of carbon dioxide phases up to 200 GPa and 10 000 K obtained from first-principles theory. The liquid region of the phase diagram is divided into several regimes – molecular and polymeric among others, based on a detailed analysis of local structure and molecular composition. The finite-temperature stability of several solid phases has been examined and the melting curve has been calculated up to 150 GPa. Liquid free energies were evaluated explicitly using a new and efficient method. The issue of carbon-oxygen demixing in the Earth’s mantle will also be addressed.

Keywords: pressure, transition, computation

Halogen bonding from charge density analysis

Enrique Espinosa, Thi Thanh Thu Bui, Slímate Dhaohai, Emmanuel Aubert, Claude Lecomte, and Gautam R. Desiraju, Laboratoire de Cristallographie, Résolution Magnétique et Modélisations (UMR 7036), Nancy Université, Vandoeuvre-lès-Nancy, France. School of Chemistry, University of Hyderabad, Hyderabad, India. E-mail: enrique.espinosa@crm2.uhp-nancy.fr

Directional intermolecular interactions of diverse strengths [1],