are primarily command-line driven, an emphasis has been placed on ease-of-use and automation. We have developed a graphical interface for the major components of PHENIX, which currently includes phenix.refine, phenix.xtriage, comprehensive validation tools based on the Molprobity web server, Phaser, and the AutoSol, AutoBuild, AutoMR, and LigandFit automation "wizards". The Python-based framework allows new GUIs to be generated semi-automatically while preserving all of the flexibility of the command-line programs, and supports both Macintosh and Linux. Python extensions for Coot and PyMOL facilitate real-time visualization of refinement and automated model-building, and convenient viewing of results. Transitions between separate modules within PHENIX are simplified or eliminated in the GUI, reducing the amount of manual input required and avoiding the use of command-line tools. Further automation is possible with definition of standard parameter sets and input files for individual programs. Future improvements will include greater use of multiprocessing and clusters, tools for handling multiple structures in parallel, and new automation pipelines.

Keywords: PHENIX, automation, software

MS.72.2

Acta Cryst. (2011) A67, C162

More speed, more data, more automation, less work!
Alun W. Ashton, Graeme Winter, Scientific Software Team, Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire (UK). E-mail: alun.ashton@diamond.ac.uk

With samples exchanged, centered and ready for data collection to start in under 60 seconds, 424 x 435 mm area detectors capable of collecting 25 images a second, goniometers rotating at over 10 degrees/second in shutterless data collections, it’s not too surprising that many synchrotron beamline users now find themselves deluged with over 7000 images and up to 15 complete datasets or 40 crystal screenings an hour. At Diamond Light Source (UK) the potential Armageddon of more speed, more data and more automation of 5 MX beamlines is only circumvented with a substantial investment in integrated and automated data reduction and structure solution pipelines backed up by real-time visualization of refinement and automated model-building, and convenient viewing of results. Transitions between separate modules within PHENIX are simplified or eliminated in the GUI, reducing the amount of manual input required and avoiding the use of command-line tools. Further automation is possible with definition of standard parameter sets and input files for individual programs. Future improvements will include greater use of multiprocessing and clusters, tools for handling multiple structures in parallel, and new automation pipelines.

Keywords: methods, phasing, proteins

MS.72.4

Acta Cryst. (2011) A67, C162

On the systematic scaling and merging of multiple datasets in macromolecular crystallography
James Foadi, Yiilmaz Alguel, Wes Armour, Danny Axford, Alex Cameron, Robin Owen, David Waterman and Gwyndaf Evans “MPL, Imperial College, London SW7 2AZ, (UK).” Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, (UK). E-mail: j.foadi@imperial.ac.uk

BLEND, a computer program to handle systematically the scaling and merging of data collected from multiple wedges or multiple crystals, is described here for the first time. The availability of more intense and collimated synchrotron sources and fast-reading detectors has enabled protein crystallographers to acquire a large number of datasets from a given structure in a relatively short interval of time. A similar step change in the speed of processing and analysis of such multiple datasets must be realised, or data collection efforts go wasted.

BLEND uses multivariate statistics, mainly in the form of cluster analysis, to bring together datasets with better merging likelihood. The program allows researchers to save time both in avoiding the combinatorial explosion implied in matching datasets and in the cumbersome and time-consuming amount of book keeping that goes with it. BLEND has been successfully used in the solution of a novel membrane protein.

Keywords: multiple, datasets, merging

C162