Microsymposia

are primarily command-line driven, an emphasis has been placed on ease-of-use and automation. We have developed a graphical interface for the major components of PHENIX, which currently includes phenix.refine, phenix.xtriage, comprehensive validation tools based on the Molprobity web server, Phaser, and the AutoSol, AutoBuild, AutoMR, and LigandFit automation “wizards”. The Python-based framework allows new GUIs to be generated semi-automatically while preserving all of the flexibility of the command-line programs, and supports both Macintosh and Linux. Python extensions for Coot and PyMOL facilitate real-time visualization of refinement and automated model-building, and convenient viewing of results. Transitions between separate modules within PHENIX are simplified or eliminated in the GUI, reducing the amount of manual input required and avoiding the use of command-line tools. Further automation is possible with definition of standard parameter sets and input files for individual programs. Future improvements will include greater use of multiprocessing and clusters, tools for handling multiple structures in parallel, and new automation pipelines.

Keywords: PHENIX, automation, software

MS.72.2

More speed, more data, more automation, less work!
Alun W. Ashton, Graeme Winter, Scientific Software Team, Diamond Light Source Ltd., Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire (UK). E-mail: alun.ashton@diamond.ac.uk

With samples exchanged, centered and ready for data collection to start in under 60 seconds, 424 × 435 mm area detectors capable of collecting 25 images a second, goniometers rotating at over 10 degrees/second in shutterless data collections, it’s not too surprising that many synchrotron beamline users now find themselves deluged with over 7000 images and up to 15 complete datasets or 40 crystal screenings an hour. At Diamond Light Source (UK) the potential Armageddon of more speed, more data and more automation of 5 MX beamlines is only circumvented with a substantial investment in integrated and automated data reduction and structure solution pipelines backed up by high performance data storage and computing clusters.

The implementation so far at Diamond will be outlined along with not only the usage for high throughput experiments and industrial usage but also how the technology is benefitting experiments with more challenging samples.

Keywords: automation, data, reduction

MS.72.3

New phasing methods for high throughput crystallography
Carmelo Giacovazzo,1, a Maria Cristina Burla,1 Rocco Caliandro,1 Benedetta Carrozzi,1 Giovanni Luca Casarcano,1 Giuliana Comunale1,2, Anna Maria Mussone,1,3 Giampiero Polidori,1,2 Dritan Siliqi,1,2 “Istituto di Cristallografia, Cnr, Bari,” Dipartimento Geomineralogico, Università di Bari. 1Dipartimento di Chimica, Università della Basilicata, Potenza. E-mail: carmelo.giacovazzo@ic.cnr.it

One year ago a new phasing method was described [1], [2], called VLD (Vive la Difference), based on the properties of a new type of Difference Fourier Synthesis. A specific feature of the synthesis is that it provides information on the ideal difference map, no matter the quality of the model: in particular, also when the model is uncorrelated with the target structure or is completely random. That allows two types of phasing approaches:

1) ab initio crystal structure solution, even of proteins [3], starting from random phases, or equivalently, from random models;
2) non-ab initio phasing: a starting model is found by one of the most popular phasing methods (e.g., Patterson techniques, molecular replacement, SAD-MAD, SIR-MIR) and VLD is applied to extend and to refine phases. Owing the feature described at the point 1) it is expected that even poor models may be a good starting point for VLD applications.

The VLD algorithm is based on a simple cyclic approach. The basic cycle is the following: the difference Fourier synthesis $\rho' = \rho - \rho_q$ is estimated, modified and Fourier inverted, the corresponding structure factor F_q is vectorially summed to F_q to provide new phase estimates for the target structure.

Such algorithm is particularly suitable for Structural Solution for High Throughput Crystallography: indeed the phases produced by VLD may be submitted with success to automated model building programs.

We are implementing VLD into the program IL MILIONE [4].

Keywords: methods, phasing, proteins

MS.72.4

On the systematic scaling and merging of multiple datasets in macromolecular crystallography
James Foadi,2 Yiilmaz Alguel,3 Wes Armour,3 Danny Axford,3 Alex Cameron,3 Robin Owen,3 David Waterman5 and Gwyndaf Evans3 2MPL, Imperial College, London SW7 2AZ, (UK), 3Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, (UK). E-mail: j.foadi@imperial.ac.uk

BLEND, a computer program to handle systematically the scaling and merging of data collected from multiple wedges or multiple crystals, is described here for the first time. The availability of more intense and collimated synchrotron sources and fast-reading detectors has enabled protein crystallographers to acquire a large number of datasets from a given structure in a relatively short interval of time. A similar step change in the speed of processing and analysis of such multiple datasets must be realised, or data collection efforts go wasted.

BLEND uses multivariate statistics, mainly in the form of cluster analysis, to bring together datasets with better merging likelihood. The program allows researchers to save time both in avoiding the combinatorial explosion implied in the analysis of multiple datasets and in the cumbersome and time-consuming amount of book keeping that goes with it. BLEND has been successfully used in the solution of a novel membrane protein.

Keywords: multiple, datasets, merging