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accepted courses, which teach how to obtain structural information 
and to describe crystal structures. In the presentation we demonstrate 
several examples from lectures and practicals.

[1] E.V. Boldyreva, J. Appl. Cryst. 2010, 43, 1172-1180.
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The term complex is frequently attributed to crystal structures 
with giant unit cells containing hundreds or thousands of atoms. 
It is commonly used in a non-defined, fuzzy way. It would be 
advantageous, however, to have a quantitative measure of structural 
complexity, to be able to compare periodic and quasiperiodic 
structures, for instance. Why could this be of interest? Some physical 
properties, which strongly depend on medium- and long-range order, 
could be related to complexity and used as knowledge basis for their 
prediction. Another interesting question is the time evolution of a 
structure (crystal growth) as function of its complexity. For instance, 
it is obvious that a crystal with a simple cubic close packed structure 
such as copper will have a much simpler growth mechanism than a 
ternary quasicrystal.

Recently, it was suggested in different context to apply the 
concept of algorithmic complexity to crystal structures, periodic and 
quasiperiodic ones [1]. This way of quantifying the complexity of a 
system is related to the minimum size of an algorithm needed for its 
full description. If we apply this concept to the Fibonacci sequence (FS) 
in the nD description, for instance, then we obtain the same algorithmic 
complexity for the quasiperiodic FS and all its periodic approximants, 
from the smalls to the largest one. This is somehow counterintuitive.

If we use the concept of symbolic complexity, we arrive at 
drastically different results for periodic and quasiperiodic structures. 
Symbolic complexity is related to the number of different structure 
motifs (AET) as a function of system size, which is a function of the 
repeat period in case of the approximants and of the system size in 
case of the FS. For another example, let’s start from a simple periodic 
structure and apply a sinusoidal incommensurate modulation. This 
immediately increases the period of the incommensurately modulated 
structure (IMS) to infinity. However, the algorithmic complexity 
of the IMS is only slightly higher than that of the small-unit-cell 
periodic structure. In case of a commensurate modulation, we can 
continuously increase the number of atoms per supercell without 
changing the algorithmic complexity of the structure, while the 
symbolic complexity would grow with the system size to infinity.

Another kind of complexity measure is the combinatorial 
complexity, which can best account for high symmetries of structural 
subunits (clusters). The less probable (symmetic) a configuration is 
the higher is its complexity. For instance, in case of equally sized hard 
spheres, close sphere packings such as the cF4-Cu structure are more 
probable from different point of views than the cP1-Po structure. 
Consequently, the latter has the higher combinatorial, but lower 
algorithmic complexity, and both have equal symbolic complexities.

In conclusion, no single complexity concept alone is able to reflect all 
facets of structural complexity, to quantify what we intuitively grasp.

[1] E. Estevez-Rams, R. Gonzaléz-Férez, Z. Kristallogr. 2009, 224, 179-184.
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Frustration occurs whenever a local order (atomic configuration) 
cannot be extended perfectly throughout the space. A paradigmatic 
example is that of polytetrahedral order encountered in dense packing 
models. In that case, a direct connection with icosahedral order is 
present, which makes the frustration concept useful in different contexts, 
like clusters, glassy materials or quasicrystals. Similar situations can be 
found with covalent materials and soft matter systems; in most cases, 
the real structure shows intricate relations between ordered regions and 
topological defects[1].

We shall first recall how frustration and order interfere in the 
general case. Then, some new results will be presented, related to 
dense frustrated order in confined (cylindrical) geometry, a topic 
which might prove interesting in the nanophysics context. Indeed, a 
rich phase diagram is found, with many different types of different 
order occurring while increasing the cylindrical radius, showing a nice 
competition between chiral, icosahedral, crystalline and disclinated 
icosahedral order.

[1] J-F-Sadoc et R. Mosseri, “ Geometrical Frustration ”, Cambridge University 
Press, 1999.
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An appropriate concept for describing an arbitrary discrete atomic 
structure is the Delone set (or an (r,R)-system). Structures with long-
range order such as crystals involves a concept of the space group as 
well.

A mathematical model of an ideal monocrystalline matter is 
defined now as a Delone set which is invariant with respect to some 
space group. One should emphasize that under this definition the well-
known periodicity of crystal in all 3 dimensions is not an additional 
requirement. By the celebrated Schoenflies-Bieberbach theorem, any 
space group contains a translational subgroup with a finite index.

Thus, a mathematical model of an ideal crystal uses two concepts: 
a Delone set (which is of local character) and a space group (which is 
of global character).

Since the crystallization is a process which results from mutual 
interaction of just nearby atoms, it is believed (L. Pauling, R. Feynmann 
et al) that the long-range order of atomic structures of crystals (and 
quasi-crystals too) comes out local rules restricting the arrangement of 
nearby atoms. 

However, before 1970’s there were no whatever rigorous 
results until Delone and his students initiated developing the 
local theory of crystals. The main aim of this theory was (and 
is) rigorous derivation of space group symmetry of a crystalline 
structure from the pair-wise identity of local arrangements around 
each atoms. To some extent, it is analogous to that as, in due time, 
it was rigorously proved that space group symmetry implies a 
translational symmetry.

In the talk it is supposed to expose some results on local rules for 
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