Microsymposia

dating from ca. 1550 BC onwards; of particular interest is the site at Armana which was occupied for a very short period of time (1350-1325 BC). Armana is located in middle Egypt and was the seat of reigning God-King Akhenaten and Queen Neferiti. Despite the prevalence of faience, the chemical makeup and manufacturing techniques used to produce it remain somewhat enigmatic.

The work presented herein utilized X-ray absorption spectroscopy (XAS) and synchrotron powder diffraction (PD) techniques to examine a range of faience objects obtained from collections acquired in Armana, in addition to a selection of faïences prepared in the laboratory. The artifacts for this study were provided by the Aegyptisches Museum, Berlin. Faience for comparison was synthesized using a base mix of 80 wt-% SiO₂, 14 wt-% NaHCO₃ and 3 wt-% CaCO₃. Before firing at 900°C, Cu colorant was added to the equivalent of 3 wt-% Cu. Copper sources included bronze, corroded bronze, various natural minerals (malachite, azurite, turquoise, diopside, chrysocolla, atacamite, etc), and laboratory chemicals (CuO, Cu₂O, CuCO₃, CuSO₄, etc).

XAS data were acquired at Beamline C, DORIS, HASYLAB. These data showed that all spectra acquired from the faïences were very similar, regardless of color, Cu concentration, or Cu source. However, analysis of the subtle differences between spectra reveal Cu coordination can be described as, either, i) a distorted CuO-octahedron with some Si present in a fairly weak second coordination sphere, or ii) exhibiting a Cu-Cu second sphere of coordination. The former is consistent with data from glasses or related materials and the later suggests incomplete transformation to a glassy state. Such results may open avenues to use XAS to assess firing temperatures of ancient Egyptian faïences and to provide context on levels of control in ancient faïence making.

PD data were acquired using the powder diffraction beamline at the Australian Synchrotron which allowed the non-destructive examination of these precious artifacts. Data from the Egyptian faïence show that the dominant crystalline phases present are quartz and tetragonal cristobalite. These results are suggestive of different maximum firing temperatures. Data acquired from samples synthesized in the laboratory, to different temperatures, affords additional information as to the mineral chemistry and thermodynamics of faïence formation.

This presentation will discuss the use of synchrotron techniques for the characterization of Egyptian faïence and the subsequent outcomes.

Keywords: XAS, powder diffraction, archeometry

MS.91.4

Evidence of the role of Zn AND Fe cations as dopants in lead antimonate yellow by x-ray absorption spectroscopy (XAS)

Naples yellow (P₂Sb₂O₇) is one of the oldest known synthetic pigments. It shows a cubic pyrochlore structure, obtained by roasting mixtures of Pb and Sb oxides. Recent studies demonstrate that Naples yellow may exist also in a modified form obtained from a ternary mixture of Pb, Sb and Sn oxides (Pb₃Sb₂O₇−₂xSnO₂−x/2).

X-ray diffraction and Raman spectroscopy investigations of standard doped yellow pyroantimonates, provided evidence that, in general, doping cations (such as Sn⁵+, Zn²⁺, Fe³+ or exceeding Pb⁴⁺) induce significant structural modifications of the pyrochlore lattice of the pigment, suggesting that ternary cations enter the octahedral sites replacing Sb⁵⁺ ions.

Here we report on the results obtained by XAS investigations carried out at the GILDA beam-line of ESRF (Grenoble, FR) on the role played by Zn and Fe cations in modified Naples yellow, characterising the ions’ local properties (interatomic distances, coordination number and oxidation state). The XAS study has been non-destructively carried out on different standard yellow pyroantimonates, as well as on Renaissance ceramic shards from the collection of the Musei Civici di Pesaro (Italy). XAS measurements at the Zn-Kand Fe-K absorption edges evidenced that Zn and Fe enter the antimonate structure. Ab-initio structural simulations based on Density Functional Theory were used to simulate both the structure around the metal (via a conventional structural relaxation) and the EXAFS spectra via a DFT Molecular Dynamics. The latter represents a novel and promising method for the analysis of point defects in crystals by EXAFS. The comparison with theory permitted to establish that in both cases the metal occupies the site of Sb. The same structure has been also observed for Zn cations in the yellow pigment of a Renaissance ceramic shard.

The study has been carried out within the joint research activities of the CHARISMA project supported by the 7th F.P. of EU.

Keywords: archeometry, EXAFS, defect

MS.91.5

Practical experience with powder XRD microdiffraction in forensic science field

Marek Kotrly, Institute of Criminalistics Prague (Czech Republic).
E-mail: kup32@mvcr.cz

X-ray powder microdiffraction is a very valuable method for exact phase analysis. The size of the area being analyzed – approx. 100 μm is roughly comparable to areas that are studied by methods of optical and electron microscopy.

Most of the examinations in forensic science deal with determination, description and comparison of practically any substances that can come into contact with persons or objects. In this context the potential of X-ray methods is critical. Of course, not even XRD methods are a panacea and are routinely used in combinations with other methods (namely SEM-EDS/WDS, Raman microspectrometry, optical microscopy, XRF, FTIR etc.).

A recent trend in the forensic sphere is determination of the phase by at least two independent methods. The outcomes of the examinations are the grounds for bodies responsible for penal proceedings; i.e. for deciding the issues of guilt and punishment, and therefore they have to possess maximum credibility. The role of XRD methods is irreplaceable here because they allow phase analysis on a physically different basis than the majority of standard analytical methods for inorganic and organic bases.

Thorough testing of the potential and comparison with other possible diffraction arrangements was carried out - classic reflection (including collimators), rotary capillary, and transmission arrangement - during the introduction of the X-ray powder microdiffraction into the analytical routine use. Tests have been carried out for the arrangement with rotary capillary in order to determine the optimal capillary diameter with respect to the signal strength and FWHM value. Zero-background silicon plates are commonly used for imaging in reflection geometry. Standard plates are non-conductive and this fact in some
cases causes problems during complementary SEM/EDS analyses when the sample is not transferred onto a different sample holder with regard to minimization of risk of its damage, loss or contamination. Therefore monocryalline silicon plates with indicated conductivity of 5 Ω cm−1 were tested in practice. This value is sufficient for SEM (based on measurements – carbon conductive strips specially intended for SEM have the conductivity of approx. 500 kΩ and higher). The plates with thickness of 300μm (±15μm) can also be used for subsequent direct FTIR analysis even in transmission mode, without the need of plate exchange. A method employing the image analysis system was introduced for precise sample adjustment for microdiffraction and the choice of the area to be measured. The trace of the primary beam on a fluorescent disc was scanned for different angles θ and subsequently saved as binary overlay images. A camera reads the live image of the sample through the focusing microscope and the operator can choose a spot for the analysis in ergonomic conditions (the second monitor was placed directly into the diffractometer chamber). This procedure is very convenient for heterogeneous samples, various abrasions, etc.

The system is further used for quantitative drug analysis. Both Rietveld method or method with the scale factor and the RIR (Reference Intensity Ratio) values (also called I/Ic values) are used. The results are cross-checked by standard methods of organic analysis (GCMS, FTIR), XRD analysis, in addition, enables precise phase analysis of inorganic components.

Acknowledgements: Microanalytical methods at the Institute of Criminalistics Prague were supported by projects: RN19961997008, RN19982000005, RN20012003007, RN20052005001, VD20062008B10, VD20072010B15, VG20102015065.

Keywords: forensic, microdiffraction, microanalysis

MS.92.1

Strategies in the crystallization of a glycoallergen and a F1-ATPase complex

Adela Rodríguez-Romero, a,b Alejandra Hernández Santoyo, a Marietta Tuena de Gómez Puyou, a and Armando Gómez-Puyou, a,b Instituto de Química, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México. Circuito Exterior, CU. Coyoacán 04510, (México, D.F). E-mail: adela@servidor.unam.mx

Hypersensitivity reactions mediated by immunoglobulins E (IgE) are considered an important public health problem in developing countries. The IgE response against an allergenic protein is the sum of specific responses against each of its allergenic epitopes, which vary in intensity. Natural rubber latex (NRL) from *Hevea brasiliensis* contains several proteins and glycoproteins involved in this type of allergy. In general, these are involved in cross-reactivity against fruits, pollens and insect venoms. The structural information about this type of proteins is scarce and the cascade of events leading to allergy symptoms is also poorly understood. Among NRL allergens there are β-1,3-glucanases (Hev b 2), lectins (Hev b 6.02), class I chitinases (Hev b 11) and profilin (Hev b 8). We recently solved the structure of two polymorphic crystals (Hev b 2), lectins (Hev b 6.02), class I chitinases (Hev b 11) and profilin (Hev b 8).

We also report the 1.9 Å structure of saposin A in a discoidal assembly with interally-bound detergent molecules. Saposin A is an alpha-helical protein that exists in both soluble and lipid-bound states, and has superficial similarities to the exchangeable apolipoproteins. Our structure show a belt of two “open-state” saposin A molecules forming a belt around an acyl chain interior, as designed.

We also report the 1.9 Å structure of saposin A in a discoidal assembly with interally-bound detergent molecules. Saposin A is an alpha-helical protein that exists in both soluble and lipid-bound states, and has superficial similarities to the exchangeable apolipoproteins. Our structure show a belt of two “open-state” saposin A molecules forming a belt around 40 detergent molecules arranged in a bilayer-like arrangement. The structure gives insight into the biological functions of the saposins, as provides a high resolution view of a discoidal lipoprotein particle.

Keywords: lipid-driven molecular complexes, lipoprotein, saposin

MS.92.2

Lipid-Driven molecular complexes

Gilbert G. Privé,a,b,c Kostantin Popovic,a Hamed Ghanei,a,b Departamento de Bioquímica, Universidad Nacional Autónoma de México. Circuito Exterior, CU. Coyoacán 04510, (México, D.F). E-mail: prive@uhnres.utoronto.ca

We describe three different self-assembled structures that are formed by lipid sequestration. The first two are designed lipopeptides that assemble into cylindrical micelles. The third is a two-component system consisting of an amphipathic protein forming a belt around a lipid assembly in discoidal lipoprotein particle.

Lipopeptide detergents (LPDs) are 25 residue peptides designed to form an alpha-helix with fatty acyl chains coupled to each end of the helix. LPDs form small 25-30 kDa micelles with aggregation number of 8-10, depending on the peptide sequence and the length of the acyl chains. We have previously described the 1.20 Å structure of LPD-12 [1], which forms octomeric micelles with all anti-parallel helices. We now report the 2.0 Å structure of LPD5Q-14, which is based on a different peptide sequence coupled to 14-carbon acyl chains. Crystals of LPDQ-14 contain 18 molecules per asymmetric unit, arranged into two 9-mer micelles. Both micelles have similar structures, and are made of up three units of “up-up-down” trimers. There are considerable differences between the LPD-12 and LPD5Q-14 micelles, but both consist of an outer alpha-helical shell surrounding an acyl chain interior, as designed.

We also report the 1.9 Å structure of saposin A in a discoidal assembly with interally-bound detergent molecules. Saposin A is an alpha-helical protein that exists in both soluble and lipid-bound states, and has superficial similarities to the exchangeable apolipoproteins. Our structure show a belt of two “open-state” saposin A molecules forming a belt around 40 detergent molecules arranged in a bilayer-like arrangement. The structure gives insight into the biological functions of the saposins, as provides a high resolution view of a discoidal lipoprotein particle.

Keywords: lipopeptides, detergents, lipoproteins