At IUCr2008, we proposed a new rapid exhaustive search powder indexing algorithm that was obtained by developing the Ito algorithm from various aspects. Several amendments have been added to the algorithm after that, and it was implemented into a powder indexing software Conograph. At IUCr2011, the algorithm and its performance are presented. The name of the software is taken from a mathematician J. H. Conway and a graph he observed in [1]. The graph is utilized to detect zones having more possibility to correspond to a sublattice of the true crystal lattice (cf. [2]) and to describe a theorem about the distribution of unobserved reflections due to extinction rule. The theorem is found and confirmed by the first author and gives a theoretical foundation of our algorithm.

The main function of Conograph consists of premtive unit-cell determination, lattice symmetry determination and lattice parameter refinement. In these procedures, observed errors of peak-positions are utilized to check the equality of equations including the Ito equation $2(q_1+q_2) = q_1 + q_2$ [3], to calculate propagated errors of lattice constants for lattice symmetry determination, and as weights in least squares method to refine lattice constants.

Conograph is already equiped with a graphic user interface to help users find the most plausible candidates easily. Several figures of merit (FOM) are prepared to sort the candidates: the de Wolff FOM [4], a symmetric FOM we propose as a natural extension of the de Wolff FOM, the number of lattice candidates detected in the neighbor of each candidate, and the unit-cell volume. For further improvements in the usability of the software, Conograph is planned to be distributed free including among users of Japan Proton Accelerator Research Complex (J-PARC).

Keywords: powder indexing, algorithm, extinction rule

MS.95.5

Chemical selectivity in structure determination by modulation enhanced X-ray diffraction

Marco Milanesio,1 Wouter van Beek,2 Luca Palin,3 Rocco Caliandro,4 Davide Viterbo,5 Atsushi Urakawa,4 Dmitry Chernyshov,6 Hermann Emerich,7 Dipartimento di Scienze e Tecnologie Avanzate and Nano Sistemi IC, Università di Piemonte Orientale, Viale T. Michel 11, Alessandria, 15121, (Italy). 1Swiss-Norwegian Beamlines at ESRF, BP 220, Grenoble, 38043, (France). 2Institute of Crystallography – CNR, Via G. Amendola 122/O, 70126 Bari, (Italy). 3Institute of Chemical Research of Catalonia (ICIQ). AV. Països Catalans, 16, E-43007, Tarragona, (Spain). E-mail: marco.milanesio@mfm.unipmn.it

X-ray diffraction methods in general allow only a limited chemical selectivity. In this contribution we show that structural information on a subset of atoms can be selectively obtained in a diffraction experiment, where the sample is subjected to a periodically varying external stimulus (temperature, pressure, concentration, light etc). This technique is called modulation enhanced diffraction (MED) [1]. In MED, the periodically varying data are averaged and post-treated by phase sensitive detection (PSD). PSD is a demodulation technique exploited in modulation excitation spectroscopy (MES) to obtain information on active species diluted into a spectator inactive matrix. In analogy to MES, MED extracts crystallographic information on a subset of atoms responding to an external stimulus, thus introducing selectivity in diffraction. Simulated and experimental MED data were produced by using a TS-1 zeolite sample as spectator, in which Xe (acting as active species) is adsorbed and desorbed by a periodic temperature change. For both simulated and experimental data, MED yielded the powder diffraction pattern of the active subset, called the “demodulated pattern”. The demodulated pattern was used to solve the crystal structure of the active species exclusively, demonstrating the chemical selectivity of MED and envisaging wide applications in the structure analysis of periodically changing materials (magnetic information storage systems, electrochemical systems such as batteries, solar cells, etc).

Keywords: structure solution, modulation enhanced diffraction, chemical selectivity.

MS.96.1

Polarized Neutron and Light Scattering from Magnetic Nano-structures under AC-field

Boris P. Toperverg Ruhr-University-Bochum (Germany). Petersburg Nuclear Physics Institute (Russia). E-mail: Boris.Toperverg@rub.de

Complementarity of Polarized Neutron and Soft X-rays Reflectometry (PNR and SXRR) has experimentally been demonstrated in a number of studies in which these methods were combined to refine static magnetic structures in thin films, super-lattices and lateral nano-patterns [2]. Both methods use similar principles [1] of the data acquisition, theoretical description and analysis providing a comparable resolution in layer-by-layer vector magnetometry. The effect of spin birefringence in PNR is dual to the X-ray magnetic circular dichroism (XMCD) so that the depth sensitivity of PNR is well complemented by the element specificity of SXRR. Furthermore, off-spectral PNR probes lateral magnetic structures over micrometer scale reciprocal to that accessed with the direct space photoemission electron microscopy (PEEM) with resonant circular polarized light (RCPL). Smaller scales probed by polarized neutron grazing incidence small angle scattering (PN GISAS) can also be approached with RCPL GISAS.

Both methods, PNR and SXRR, have recently shown potentials to probe not only static properties of magnetic nano-structures, but also their evolution under time-dependent external field. Nearly instant X-ray response for a magnetization variation allows to access fast spin kinetics in individual nano-elements. In contrast, PNR can, as was recently demonstrated [3], records collective response of magnetic nano-structures to AC field varied over a broad range of amplitudes and frequencies (up to a few MHz). This, as will be thoroughly discussed, opens up new perspectives to experimentally distinguish between various re-magnetization scenarios in ensembles of lateral nano-patterns. First results on domain kinetics in continuous and periodically patterned magnetic films and heterostructures deduced from AC PNR experiments are reported. Further developments, including application of the time modulation of the incident neutron beam synchronized with AC field at the sample position will be outlined. Feasibility of magnon spectroscopy with inelastic PNR under condition of ferromagnetic resonance is theoretically examined.