Oriented nucleation of hemozoin at the food vacuole membrane in *P. falciparum*

Sergey Kapishnikov,

Allon Weiner,

Jens Als-Nielsen,

Michael Elbaum,

Leslie Leiserowitz,

Department of Materials and Interfaces, The Weizmann Institute of Science, Rehovot (Israel).

Niels Bohr Institute, University of Copenhagen, Copenhagen (Denmark).

E-mail: sergei.kapishnikov@weizmann.ac.il

The nucleation of hemozoin (HZ) in the digestive vacuole (DV) of *Plasmodium falciparum* in malaria-infected red blood cells (RBCs) is a topic of current interest. HZ crystals have been reported encased within neutral lipid nanospheres in the DV, which appears inconsistent with the concepts of catalyzed nucleation of HZ at a lipid surface and inhibition of nucleation of HZ via antimarial agents that target the HZ crystal surface. To resolve this conundrum, we probed the orientation and crystallinity show progressive variations within during the same shell layer as well as abrupt changes at the transitions between layers with different microstructural organizations. This study provides useful insights into both the mechanisms that control the development of order in mollusc shell microstructures and those that determine the switch between layers with different microstructural organizations.

This information could be of interest to understand the processes of self-assembly that happen in these biomaterials and may be applied to the design of bio-inspired advanced ceramic materials.

Keywords: mollusk shell, crystallographic orientation, X-ray diffraction

MS14.P03

MS14.P04

MS14.P05

Single crystal growth and characterization of lead hydroxyapatite

Oratani Saisa-ard,

Kenneth J. Haller,

School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.

E-mail: Oratani.phasai@yahoo.com

Calcium hydroxyapatite (CaHAP, Ca$_3$(PO$_4$)$_2$(OH)) is the dominant component of human enamel, dentin, and bone. Its structure belongs to space group P6$_3$/m and is susceptible to ionic substitution in both anion and cation sites. Pb$^{2+}$ can replace Ca$^{2+}$ in the apatite structure resulting in lead hydroxyapatite (PbHAP) which is isostructural with CaHAP. This work reports products from a gel crystallization method used for preparation of larger crystals of PbHAP by controlling nucleation and crystal growth rate by changing the density of the gel medium. Crystals obtained in milli-scale on top of the gel exhibit equant morphology while crystals inside the gel layer exhibit pennant morphology. FT-IR spectra of the products exhibit asymmetric (PO) stretching, symmetric (PO) stretching, and (OPO) bending in the 1002-1047 cm$^{-1}$, 924-956 cm$^{-1}$, and 518-600 cm$^{-1}$ regions, respectively, and OH stretching at 3555 cm$^{-1}$. The FT-IR spectrum of the product on top of the gel also showed NO$_3^-$ bands (NO$_3^-$ from lead nitrate starting material) which are not present in the product formed inside the gel layer.

Keywords: hydroxyapatite, apatite, gel crystallization

Self-assembly of metallated TPP porphyrin by external dipyridylic ligands

Arkaitz Fidalgo-Marijuan,

Gotzone Barandika,

Begoña Bazán,

Miren Karmele Urtiaga,

Department of Inorganic Chemistry, Universidad del País Vasco (UPV/EHU), Leioa (Spain).

Department of Mineralogy and Petrology, Universidad del País Vasco (UPV/EHU), Vitoria (Spain).

E-mail: arkaitz.fidalgo@ehu.es

Supramolecular entities based on self-assembly of metalloporphyrins are paradigmatic examples of the great efficiency of the nanodevices used by natural systems in photosynthesis, oxygen transport, electron transfer and catalysis [1]. Therefore, they constitute reference models for the development of new materials that make these, and other yet unexplored, functions.

While metalloporphyrin biosystems operate in solution, the preparation of materials based on these macrocycles moves the problem to the solid state synthesis. Thus, obtaining supramolecular entities may be approached by different strategies of synthetic design. One of them consists on the use of external dipyridylic ligands to assemble the metallated porphyrin units. In this aspect, the range of compounds that can be used is endless. In this context, our research group is working with different combinations of organic ligands and metalloporphyrins, and the work herein presented corresponds to the compound [FeTTP(bipy)] (TTP=meso-tetraphenylporphyrin and bipy=4,4’-bipyridine), obtained by solvothermal synthesis.

The crystal structure of [FeTTP(bipy)] consists of 1D chains of alternating FeTTP and bipy molecules bonded to the axial positions of the coordination sphere. These chains are sustained by π-π stacking between the phenyl rings at about 5 Å.

So far, very few compounds with TPP and bipy have been described, of which only one [2] is really a 1D coordination polymer, being all others isolated dimers. It is also remarkable that, as far as we know,