in silico model, based on the structure of a 93% sequence identical protein from Streptococcus pneumoniae. Constructs were evaluated by use of circular dichroism spectroscopy, mass-spectrometry (MS), ion mobility MS, surface plasmon resonance, and enzyme activity assays. Results indicate that lysine residue at positions 252, 255, 434, and 435 interact with plasmidogen in a concerted fashion. Other point-mutations either destabilized the octamer (K344E), or caused SEN to lose enzymatic activity (K334A).

The current study aims at further exploring these results by X-ray crystallography. Diffraction data has been collected from all SEN constructs of interest, including the wild type, and is presently being refined and analyzed. These structures will be instrumental for proposing mechanistic models based on the data from the many functional studies, as well as provide detail for further experiments.

Keywords: complexation, bacterial, disease.

MS16.P66

Structures of N-Acetylmannosamine kinase in complex with ADP/ATP for drug design

Jacobo Martinez, Long Duc Nguyen, Werner Reutter, Hua Fan, Wolfram Saenger, Sebastien Moniot* Institut für Chemie und Biochemie-Kristallographie, Freie Universität Berlin, Berlin (Germany). *Institut für Biochemie und Molekularbiologie, Charité-Universitätsmedizin Berlin, Berlin (Germany). E-mail: martinez@chemie-fu-berlin.de

Sialic acids are essential components of glycconjugates in the cell membrane. As a terminal negatively charged sugars on cell surface glycans, they are responsible for the interaction, structure and functionality of all deuterostome cells. Pathogens and many malignant tumor types present abnormal quantities of sialic acid on the cell surface, which helps them avoid the host immune response. The key enzyme of the biosynthesis of sialic acid is UDP-N-acetylgalactosamine-2-epimerase/N-acetylmannosamine kinase (GNE). This bifunctional enzyme catalyzes the rate limiting step in the transformation of UDP-N-acetylgalactosamine to N-acetylmannosamine-6-phosphate and has a direct impact on the sialylation of the cell surface. Distinct mutations on GNE have been found to cause hereditary inclusion body myopathy (HIMB), but the molecular basis of the pathophysiology are still unknown.

Here, we present the crystal structure of the N-acetylmannosamine Kinase (MNK) domain in complex with N-acetylmannosamine (ManNAc) at 1.65 Å resolution as well as the structures of the complexes MNK/ManNAc/ADP (1.8 Å) and MNK/ManNAc-6-Phosphate/ADP (2.1 Å). The V-shaped MNK monomer adopts a close configuration upon ManNAc binding. Located in a groove formed between the two domains of MNK, ManNAc is strongly coordinated in a network of 17 hydrogen bonds and interacts with eight residues distributed among the two MNK domains. This strong network correlates with the high MNK specificity for ManNAc.

Our findings offer a clearer understanding on the action of the key enzyme for sialic acid biosynthesis and serve as the necessary structural basis to design agonists and antagonists opening novel ways on glycan bioengineering and cancer therapy research.

An inhibitor of hMNK would be a valuable tool for sialic acid research and for an alternative approach in cancer treatment. Based on the here presented hMNK/ManNAc and hMNK/ManNAc/ADP structures, we hypothesize that a modification of the C6-position of ManNAc with a relatively small polar group could potentially be a good hMNK inhibitor. In a first approach to verify this idea, we synthesized ManNAc-6OAc and tested its inhibitory effects on hMNK compared with other previously published inhibitors of hMNK. Indeed ManNAc-6OAc showed a more efficient inhibition, demonstrating the value of the here presented structural information.

Keywords: sialic-acid, glyobiology, kinase

MS16.P67

Structural and functional determinants of protein kinase CK2α

Graziano Lollì, Roberto Battistutta, Venetian Institute for Molecular Medicine (VIMM), via Orus 2, 35129 Padova, (Italy) and Department of Chemical Sciences, University of Padua, via Marzolo 1,35131 Padova, (Italy). E-mail: graziano.lolli@unipd.it

Ser/Thr protein kinase CK2 is involved in several processes affecting and regulating cellular life, such as cell cycle progression, gene expression, cell growth and differentiation and embryogenesis. In several cancer types CK2 shows elevated activity associated with conditions that favour the onset and the maintenance of the tumor phenotype. This lead to the identification of compounds able to inhibit the catalytic activity of this oncogenic kinase, in particular of ATP-competitive inhibitors.

The regulation of CK2 has been instead poorly explored. The many available crystal structures indicate that this enzyme owns some regions of remarkable flexibility that were associated to important functional properties. Of particular relevance is the flexibility, unique among protein kinases, of the hinge region and the following helix αD.

The structural bases of this characteristic flexibility are discussed. Some controversial issues concerning the functional interpretation of structural data on maize and on human CK2 are also analysed, pointing out what is reasonably established and what is still unclear about this enzyme. This analysis can be useful to outline some principles at the basis of the development of effective ATP-competitive CK2 inhibitors.

Keywords: kinase, flexibility, cancer

MS16.P68

Structural characterization of D-Phe-Pro-D-Arg-derived thrombin inhibitors

Pedro J. B. Pereira, Ana Carvalho Figueiredo, Sandra Macedo-Ribeiro, Manfred Philipp, Cristina C. Clement, Instituto de Biologia Molecular e Celular, Universidade do Porto, (Portugal), Department of Chemistry, Lehman College & Biochemistry Program, CUNY Graduate School, New York, NY 10036 (USA). E-mail: ppeireira@bmc.up.pt

Thrombosis-related disorders such as myocardial infarction, stroke, and pulmonary embolism remain a major cause of mortality worldwide. Physical damage to the vascular system triggers the coagulation cascade, a series of activation reactions of circulating precursor proteins and regulating factors that ultimately prevent blood loss without compromising blood flow through either the uninjured or the damaged vessels. The central role played by the serine proteinase thrombin in this process has driven the interest on thrombin inhibitors as potential anti-thrombotic drugs [1].

Rational design of peptide-based thrombin inhibitors led to