Acta Cryst. (2011) A67, C327

Shock wave synthesis and properties of rocksalt-type of alumininium nitride

Kevin Keller,^a Thomas Schlothauer,^a Marcus Schwarz,^b Gerhard Heide,^a Edwin Kroke,^b *aTU Mining Academy Freiberg, Institute for Mineralogy, Freiberg (Germany).* ^b*TU Mining Academy Freiberg, Institute for Inorganic Chemistry, Freiberg (Germany).* E-mail: kevin. keller@mineral.tu-freiberg.de

Aluminium nitride is a ceramic material with a high thermal conductivity, a small thermal expansion coefficient and good mechanical properties. Moreover AlN is a wide-bandgap semiconductor ($E_g = 6.2eV$) and therefore high potential substrate material for high-power electronic applications [1]. At pressure from 14-23GPa the wurtzitic aluminium nitride (wz) undergoes a phase transition to rocksalt structure (rs) at static experiments [2], [3], [4]. A sinterbody of wz-AlN/rs-AlN show high hardness (>4000HV), high electric resistance and a thermal conductivity up to 600W/mK [5]. Though the phase transition through shock waves were verified, shock experiments failed to quench the high-pressure phase so far [6].

Currently rs-AlN were successfully synthesized from AlN nanopowder with shock wave synthesis via flyer-plate method at the Freiberg High-Pressure-Research-Centre (FHP). A 80mm metal plate were accelerated by high explosive to several km/s striking a steel container with the pure AlN sample powder. To obtain good conditions a flat shock wave were produced with a special plane-wave-generator. The fine greyish powder (at the moment up to 2g per shot), which can be gathered from recovery container, shows up to 50% of the high-pressure AlN-phase. Caused by high oxygen content of the commercial AlN nanopowder, the synthesis product consist some percentage corundum and γ -AlON (up to 17%). At a given porosity of 1,68 at about 23GPa the highest yield can be achieved, while at higher pressures or major powder porosity, the post-shock-temperature is too high, so that the new high-pressure phase cannot be quenched and decomposes partly or complete to wz-AlN.

First experiments show good chemical resistance of rs-AlN to acids and bases and a thermal stability higher than 1100°C in air. Further analysis (FTIR, 27Al MAS-NMR, neutron diffraction and insitu HT-XRD) are in progress.

Fig 1: X-ray diffraction of **(a)** commercial nano-AlN-powder and **(b)** sample shocked at 22GPa with 50% rs-AlN yield.

 W. Werdecker, F. Aldinger, Components, Hybrids, and Manufacturing Technology 1984, 7, 399-404. [2] I. Gorczyca, N.E. Christensen, P. Perlin, P. I. Grzegory, J. Jun, M. Bockowski, Solid State Communications 1991, 79, 1033-1034. [3] M. Ueno, A. Onodera, O. Shimomura, K. Takemura, Physical Review B 1992, 45, 10123-10126. [4] Q. Xia, H. Xia, A.L. Ruoff, Journal of Applied Physics 1993, 73, 8198-8200. [5] H. Vollstadt, H. Recht, Patent DD000000292903A5 1991. [6] K. Kondo, A. Sawaoka, K. Sato, M. Ando, AIP Conference Proceedings 1982, 78, 325-329.

Keywords: aluminium nitride, shock wave synthesis, hard material

MS19.P04

New high-pressure-high-temperature forms in sesquioxides

Sergey V. Ovsyannikov,^a Xiang Wu,^b Vladimir V. Shchennikov,^c Alexander E. Karkin,^c and Leonid Dubrovinsky,^a *Bayerisches* Geoinstitut, Universität Bayreuth, Bayreuth (Germany). ^bSchool of Earth and Space Sciences, Peking University, Beijing (China). ^cInstitute of Metal Physics of Russian Academy of Sciences, Urals Division, Yekaterinburg (Russia). E-mail: sergey.ovsyannikov@uni-bayreuth.de

Sesquioxides, M_2O_3 (where M – is a metal, like Al, Fe, Ti, Cr, Ga, etc.) (Fig.) are the focuses of interests of several fields, such as: geosciences, condensed matter physics and chemistry, industry and others. They show two trends in ambient crystal structure: oxides of metals of small periodic numbers Z prefer crystallization in a corundum structure, while those of metals of high periodic numbers prefer adopting in a cubic bixbyite lattice.

In this presentation we review new trends in high-pressure-hightemperature (HP-HT) studies in sesquioxides and report some of our new results on HP-HT preparation of novel forms of sesquioxides and examination of their properties. As an examples, we will display several important cases, some of which are listed below:

- (i) <u>'Golden oxide</u>': Examination of electron band structure of the recently discovered golden Th₂S₃-type phase of Ti₂O₃[1], [2] by a set of experimental and theoretical methods.
- (*ii*) <u>'Structural engineering</u>': fabrication of new structural forms in 'mixed' oxides, e.g. in $(Ti_{1-x}M_x)_2O_3$ solutions by HP-HT synthesis.
- (*iii*) '<u>Hidden phases</u>': the observation of new intermediate HP-HT phases in seemingly well-studied M₂O₃ materials.
- (iv) '<u>Composites</u>': not just mixtures of M₂O₃, but cases, like: 'selforganization', ordering, superstructuring and other puzzling processes in mixtures under HP-HT conditions; 'hidden' composite properties of a single structural phase of a single material prepared at HP-HT, etc.

 D. Nishio-Hamane, M. Katagiri, K. Niwa, A. Sano-Furukawa, T. Okada and T. Yagi, *High Pressure Res.* 2009, 29, 379. [2] S. V. Ovsyannikov, X. Wu, V. V. Shchennikov, A. E. Karkin, N. Dubrovinskaya, G. Garbarino, and L. Dubrovinsky, *J. Phys.: Condens. Matter*, 2010, 22, 375402.

Keywords: pressure, oxide, transition

MS19.P05

Acta Cryst. (2011) A67, C327-C328

Phase stability of boron relative to β -boron at high pressure and high temperature

Jiaqian Qin, Tetsuo Irifune, Toru Shinmei, Hiroaki Ohfuji, Li Lei, Geodynamics Research Center, Ehime University, (Japan). E-mail: jiaqianqin@gmail.com

Boron is one of the nonmetal elements that have been widely studied due to its complex polymorphism and fascinating chemical and physical properties. [1], [2] Boron's three valences are too localized to make it metallic and insufficient in number to form a simple covalent bond. As a result, boron atoms form B_{12} icosahedra link together in a variety of ways. Until now, probably four of the reported boron phases correspond to the pure element. [1], [2]: α -boron (rhombohedral, within a 12-atom unit cell), β -boron (high temperature form, rhombohedral, structure is not fully understood and consists of 105 or 108 atoms in

the unit cell), T-192 (tetragonal, with 190-192 atoms per unit cell), and γ -boron (high pressure phase, orthorhombic, with 28 atoms per unit cell). The new phase turned out to be a key to understanding the phase diagram of boron-the only element for which the phase diagram was unknown since its discovery 200 years ago.

Here, we report the synthesis of γ - and T-192 boron from β -boron at pressures up to 18 GPa and temperatures up to 2200 °C using a multianvil apparatus combined with x-ray diffraction (XRD) and Raman spectra. Based on the XRD and Raman results, we give the phase boundary of β -, γ -, and T-192 boron. Fig.1 shows the phase relations between β -boron (open), γ -boron (solid) and T phase (inverse triangles) based on the results of the multianvil quenched experiments. The semi-solid circles represent β -boron and γ -boron in coexistence. The line is a phase boundary between β -boron and γ -boron, and the inset show the theoretical phase boundary from Oganov et al.[1] and the tentative phase boundary from Zarechnaya et al.[2]. Additionally, the two open inverse triangle represent P-T conditions of T-192 phase from Oganov et al.[1] and Ma et al.[3] respectively. Combined with the previous results [1], [2] and our study, γ -boron phase becomes stable under a certain pressures (above ~8.5 GPa), and β -boron can transform into y-boron above ~8.5 GPa and using heating to overcome kinetic barriers, and the kinetic barriers decrease with increasing pressure. However, at higher temperatures, β -boron and T-192 phase are more stable than γ -boron, thus γ -boron transforms back to β -boron (~9 GPa) or continues to transform into T-192 phase (above ~10 GPa) with increasing temperature depend on undergoing high pressure.

Fig.1 Phase relations between β -boron, γ -boron and T phase

 A.R. Oganov, J. Chen, C. Gatti, Y.Z. Ma, Y.M. Ma, C.W. Glass, Z. Liu, T. Yu, O.O. Kurakevych, V.L. Solozhenko, *Nature* 2009, *457*, 863-867. [2] E.Y. Zarechnaya, L. Dubrovinsky, N. Dubrovinskaia, Y. Filinchuk, D. Chernyshov, V. Dmitriev, N. Miyajima, A. El Goresy, H.F. Braun, S. Van Smaalen, I. Kantor, V. Prakapenka, M. Hanfland, A.S. Mikhaylushkin, I.A. Abrikosov, S.I. Simak, *Phys. Rev. Lett.* 2009, *102*, 185501. [3] Y.Z. Ma, C.T. Prewitt, G.T. Zou, H.K. Mao. R.J. Hemley, *Phys. Rev. B.* 2003, *67*, 174116

Keywords: boron, phase boundary, high pressure and high temperature

MS19.P06

Acta Cryst. (2011) A67, C328

Structural anomaly in a novel iron-based perovskite

Ikuya Yamada,^{a,b} Kazuki Tsuchida,^a Kenya Ohgushi,^{b,c} Naoaki Hayashi,^d Jungeun Kim,^e Naruki Tsuji,^e Ryoji Takahashi,^a Norimasa Nishiyama,^f Toru Inoue,^f Tetsuo Irifune,^f Kenichi Kato,^g Masaki Takata,^g Mikio Takano^h ^aDepartment of Chemistry, Ehime Univ. ^bJST, TRIP. ^cISSP, Univ. of Tokyo. ^dKyoto Univ. ^eJASRI. ^fGRC, Ehime Univ. ^gRIKEN. ^hiCeMS, Kyoto Univ. (Japan) E-mail: ikuya@ehimeu.ac.jp Recent discovery of iron-based perovskites $ACu_3Fe_4O_{12}$ (A = Ca and La) has been attracting much interest due to the fascinating and unexpected properties. A charge disproportionation (CD) of Fe⁴⁺ into Fe³⁺ and Fe⁵⁺ occurs in CaCu₃Fe₄O₁₂ (CCFO) [1], whereas an intersite charge transfer (CT) between Cu and Fe results in a large volume change in LaCu₃Fe₄O₁₂ [2]. The different electronic phases resulted from CD/CT imply that further anomalous properties can be achieved in this system.

A novel iron-based perovskite $\text{SrCu}_3\text{Fe}_4\text{O}_{12}$ (SCFO) was successfully synthesized using high-pressure of 15 GPa. The structural and physical properties of SCFO were in contrast to those of the known $A\text{Cu}_3\text{Fe}_4\text{O}_{12}$ (A = Ca and La) perovskites. SCFO demonstrated a large negative thermal expansion (NTE) with a linear expansion coefficient (ca. $-2x10^{-5}$ K⁻¹ at maximum) in a temperature range of 170–270 K. The Rietveld refinement based on the synchrotron X-ray powder diffraction data revealed that the NTE was attributed to a continuous intersite CT between Cu and Fe. Mössbauer spectroscopy exhibited that SCFO resulted in a charge disproportionated state below ~200 K. The relative abundance of Fe³⁺: Fe⁵⁺ = 4: 1, which is different from the ratio of 1: 1 for CCFO, implies the electron doping into Fe through intersite charge transfer.

[1] I. Yamada et al., *Angew. Chem. Int. Ed.* **2008**, *47*, 7032–7035. [2] Y.W. Long et al., *Nature* **2009**, *458*, 60–63.

Keywords: novel perovskite, negative thermal expansion, high-pressure synthesis

MS19.P07

Acta Cryst. (2011) A67, C328-C329

Electron and magnetic properties in high temperatures magnetic semiconductors at high pressure up to 7 GPa

Akhmedbek Mollaev,^a Ibragimkhan Kamilov,^a Rasul Arslanov,^a Sergey Marenkin,^b Temirlan Arslanov,^a Ullubiy Zalibekov,^a *aInstitute* of Physics, Daghestan Scientific Center of the Russian Acadey of Sciences, 367003, Makhachkala, (Russia). ^bInstitute of common and Inorganic chemistry of the Russian Academy of Sciences, 119991, Moscow, (Russia). E-mail: a.mollaev@mail.ru

In high-temperature ferromagnetic semiconductors Cd₁ Mn_vGeAs $(x=0\div0.36)$ and $Cd_{1-x}Mn_xGeP_2$ (x=0÷0.225) there is carried out a complex investigation of electric and magnetic properties. The baric dependences of the specific resistance ρ , Hall coefficient R_H, and relative magnetic susceptibility χ/χ_0 are measured. The $\rho(P)$ and R(P)are measured in high-pressure device of "Toroid" type [1], [2] when pressure rises and falls up to 7 GPa. The magnetic susceptibility is estimated by a method described in the work [3]. Structural phase transitions are found in baric dependences of $\rho(P)$ and $R_{H}(P)$ in both compounds at increase and decrease in pressure. A position of phase transitions sifts towards the high pressures when a percentage of Mn increases. All phase transitions are reversible in Cd_{1-x}Mn_xGeAs₂, in Cd₁₋ $_xMn_xGeP_2$ samples with x ≤ 0.135 the phase transition is accompanied by partial decomposition of a substance, what confirms the X-ray diffraction study before and after pressure applying on dependences (χ/χ_0) P. In all samples of both compounds there are observed the magnetic phase transitions which shift towards high pressures with increase in percentage of Mn. When pressure decreases the hysteresis emerges. A magnetic phase transition is not revealed in base samples of CdGeAs and CdGeP. We interpret the observed phase transitions as non-magnetic phase transition [4]. The temperature dependences of normal and abnormal Hall coefficients are calculated from magneticfield dependences of Hall resistance for Cd_{1-x}Mn_xGeAs₂ (x=0÷0.36) by the method of interactive graphical plotting.