the unit cell), T-192 (tetragonal, with 190-192 atoms per unit cell), and γ-boron (high pressure phase, orthorhombic, with 28 atoms per unit cell). The new phase turned out to be a key to understanding the phase diagram of boron—the only element for which the phase diagram was unknown since its discovery 200 years ago.

Here, we report the synthesis of γ- and T-192 boron from β-boron at pressures up to 18 GPa and temperatures up to 2200 °C using a multi anvil apparatus combined with x-ray diffraction (XRD) and Raman spectra. Based on the XRD and Raman results, we give the phase boundary of β-, γ-, and T-192 boron. Fig.1 shows the phase relations between β-boron (open), γ-boron (solid) and T phase (inverse triangles) based on the results of the multi anvil quenched experiments. The semi-solid circles represent β-boron and γ-boron in coexistence. The line is a phase boundary between β-boron and γ-boron, and the inset show the theoretical phase boundary from Oganov et al.[1] and the tentative phase boundary from Zarechnaya et al.[2]. Additionally, the two open inverse triangle represent P-T conditions of T-192 phase from Oganov et al.[1] and Ma et al.[3] respectively. Combined with the previous results [1], [2] and our study, γ-boron phase becomes stable under certain pressures (above ~8.5 GPa), and β-boron can transform into γ-boron above ~8.5 GPa and using heating to overcome kinetic barriers, and the kinetic barriers decrease with increasing pressure. However, at higher temperatures, β-boron and T-192 phase are more stable than γ-boron, thus γ-boron transforms back to β-boron (~9 GPa) or continues to transform into T-192 phase (above ~10 GPa) with increasing temperature depend on undergoing high pressure.

Recent discovery of iron-based perovskites $\text{ACu}_2\text{Fe}_2\text{O}_5$ ($A=\text{Ca}$ and La) has been attracting much interest due to the fascinating and unexpected properties. A charge disproportionation (CD) of Fe$^{3+}$ into Fe$^{2+}$ and Fe$^{4+}$ occurs in $\text{CaCu}_2\text{Fe}_2\text{O}_5$ (CCFO) [1], whereas an intersite charge transfer (CT) between Cu and Fe results in a large volume change in $\text{LaCu}_2\text{Fe}_2\text{O}_5$ [2]. The different electronic phases resulted from CD/CT imply that further anomalous properties can be achieved in this system.

A novel iron-based perovskite $\text{SrCu}_2\text{Fe}_2\text{O}_5$ (SCFO) was successfully synthesized using high-pressure of 15 GPa. The structural and physical properties of SCFO were in contrast to those of the known $\text{ACu}_2\text{Fe}_2\text{O}_5$ ($A=\text{Ca}$ and La) perovskites. SCFO demonstrated a large negative thermal expansion (NTE) with a linear expansion coefficient (ca. -2×10^{-5} K$^{-1}$ at maximum) in a temperature range of 170–270 K. The Rietveld refinement based on the synchrotron X-ray powder diffraction data revealed that the NTE was attributed to a continuous inter-site CT between Cu and Fe. Mössbauer spectroscopy exhibited that SCFO resulted in a charge disproportionated state below ~200 K. The relative abundance of Fe$^{2+}$:Fe$^{4+}=4:1$, which is different from the ratio of 1:1 for CCFO, implies the electron doping into Fe through inter-site charge transfer.

Keywords: novel perovskite, negative thermal expansion, high-pressure synthesis

MS19.P07

Electron and magnetic properties in high temperatures magnetic semiconductors at high pressure up to 7 GPa

Akhmedbek Mollaeev,a Ibragimkhan Kamilov,a Rusul Arslanov,a Sergey Marenkin,a Temirfan Arslanova, Ullubiy Balibekovb, Institute of Physics, Daghestan Scientific Center of the Russian Academy of Sciences, 367003, Makhachkala, (Russia); aInstitute of common and Inorganic chemistry of the Russian Academy of Sciences, 119991, Moscow, (Russia). E-mail: a.mollaev@mail.ru

In high-temperature ferromagnetic semiconductors Cd_xMnGeAs ($x=0.36$) and Cd_xMnGeP ($x=0.225$) there is carried out a complex experiment of electric and magnetic properties. The baric dependences of the specific resistance ρ, Hall coefficient R_h and relative magnetic susceptibility χ/γ are measured. The $\rho(P)$ and $R(P)$ are measured in high-pressure device of “Toroid” type [1], [2] when pressure rises and falls up to 7 GPa. The magnetic susceptibility is estimated by a method described in the work [3]. Structural phase transitions are found in baric dependences of $\rho(P)$ and $R(P)$ in both compounds at increase and decrease in pressure. A position of phase transitions shifts towards the high pressures when a percentage of Mn increases. All phase transitions are reversible in Cd_xMnGeAs, in Cd_xMnGeP, samples with $x \leq 0.135$ the phase transition is accompanied by partial decomposition of a substance, what confirms the X-ray diffraction study before and after pressure applying on dependences $(\chi/\gamma)/P$. In all samples of both compounds there are observed the magnetic phase transitions which shift towards high pressures with increase in percentage of Mn. When pressure decreases the hysteresis emerges. A magnetic phase transition is not revealed in base samples of CdGeAs and CdGeP. We interpret the observed phase transitions as non-magnetic phase transition [4]. The temperature dependences of normal and abnormal Hall coefficients are calculated from magnetic-field dependences of Hall resistance for Cd_xMnGeAs, ($x=0.36$) by the method of interactive graphical plotting.

Keywords: novel perovskite, negative thermal expansion, high-pressure synthesis

MS19.P06

Structural anomaly in a novel iron-based perovskite

Ikuya Yamada$^{a, b}$ Kazuki Tsuchida,a Kenya Ohgushi,$^{a, b}$ Naoki Hayashi,a Jungeun kim,a Naruki Tsuji,a Ryuji Takahashi,a Norimasa Nishiyama,a Toru Inoue,a Tetsuo Iriyamaa, Kenichi Katoa, Masaki Takataa Milko Takanoa aDepartment of Chemistry, Ehime Univ. bJST, TRIP. ISSN, Univ. of Tokyo. cKyoto Univ. JIASRI. dERC, Ehime Univ. eRIKEN. fiCeMS, Kyoto Univ. (Japan) E-mail: ikuya@ehime-u.ac.jp