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the unit cell), T-192 (tetragonal, with 190-192 atoms per unit cell), and 
γ-boron (high pressure phase, orthorhombic, with 28 atoms per unit 
cell). The new phase turned out to be a key to understanding the phase 
diagram of boron-the only element for which the phase diagram was 
unknown since its discovery 200 years ago.

Here, we report the synthesis of γ- and T-192 boron from β-boron 
at pressures up to 18 GPa and temperatures up to 2200 °C using a 
multianvil apparatus combined with x-ray diffraction (XRD) and 
Raman spectra. Based on the XRD and Raman results, we give the 
phase boundary of β-, γ-, and T-192 boron. Fig.1 shows the phase 
relations between β-boron (open), γ-boron (solid) and T phase (inverse 
triangles) based on the results of the multianvil quenched experiments. 
The semi-solid circles represent β-boron and γ-boron in coexistence. 
The line is a phase boundary between β-boron and γ-boron, and the 
inset show the theoretical phase boundary from Oganov et al.[1] and 
the tentative phase boundary from Zarechnaya et al.[2]. Additionally, 
the two open inverse triangle represent P-T conditions of T-192 phase 
from Oganov et al.[1] and Ma et al.[3] respectively. Combined with the 
previous results [1], [2] and our study, γ-boron phase becomes stable 
under a certain pressures (above ~8.5 GPa), and β-boron can transform 
into γ-boron above ~8.5 GPa and using heating to overcome kinetic 
barriers, and the kinetic barriers decrease with increasing pressure. 
However, at higher temperatures, β-boron and T-192 phase are more 
stable than γ-boron, thus γ-boron transforms back to β-boron (~9 GPa) 
or continues to transform into T-192 phase (above ~10 GPa) with 
increasing temperature depend on undergoing high pressure.

Fig.1 Phase relations between β-boron, γ-boron and T phase
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Recent discovery of iron-based perovskites ACu3Fe4O12 (A = Ca 
and La) has been attracting much interest due to the fascinating and 
unexpected properties. A charge disproportionation (CD) of Fe4+ into 
Fe3+ and Fe5+ occurs in CaCu3Fe4O12 (CCFO) [1], whereas an intersite 
charge transfer (CT) between Cu and Fe results in a large volume 
change in LaCu3Fe4O12 [2]. The different electronic phases resulted 
from CD/CT imply that further anomalous properties can be achieved 
in this system.

A novel iron-based perovskite SrCu3Fe4O12 (SCFO) was 
successfully synthesized using high-pressure of 15 GPa. The structural 
and physical properties of SCFO were in contrast to those of the known 
ACu3Fe4O12 (A = Ca and La) perovskites. SCFO demonstrated a large 
negative thermal expansion (NTE) with a linear expansion coefficient 
(ca. –2x10–5 K–1 at maximum) in a temperature range of 170–270 
K. The Rietveld refinement based on the synchrotron X-ray powder 
diffraction data revealed that the NTE was attributed to a continuous 
intersite CT between Cu and Fe. Mössbauer spectroscopy exhibited 
that SCFO resulted in a charge disproportionated state below ~200 K. 
The relative abundance of Fe3+: Fe5+ = 4: 1, which is different from the 
ratio of 1: 1 for CCFO, implies the electron doping into Fe through 
intersite charge transfer.
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In high-temperature ferromagnetic semiconductors  Cd1-xMnxGeAs 
(x=0÷0.36) and Cd1-xMnxGeP2 (x=0÷0.225) there is carried out a 
complex investigation of electric and magnetic properties. The baric 
dependences of the specific resistance ρ, Hall coefficient RH, and 
relative magnetic susceptibility χ/χ0 are measured. The ρ(P) and R(P) 
are measured in high-pressure device of “Toroid” type [1], [2] when 
pressure rises and falls up to  7 GPa. The magnetic susceptibility is 
estimated by a method described in the work [3]. Structural phase 
transitions are found in baric dependences of ρ(P) and RH(P) in both 
compounds at increase and decrease in pressure. A position of phase 
transitions sifts towards the high pressures when a percentage of Mn 
increases. All phase transitions are reversible in Cd1-xMnXGeAs2, in Cd1-

xMnxGeP2 samples with x≤0.135 the phase transition is accompanied 
by partial decomposition of a substance, what confirms the X-ray 
diffraction study before and after pressure applying on dependences 
(χ/χ0)P. In all samples of both compounds there are observed the 
magnetic phase transitions which shift towards high pressures with 
increase in percentage of Mn. When pressure decreases the hysteresis 
emerges. A magnetic phase transition is not revealed in base samples 
of CdGeAs and CdGeP. We interpret the observed phase transitions 
as non-magnetic phase transition [4]. The temperature dependences of 
normal and abnormal Hall coefficients are calculated from magnetic-
field dependences of Hall resistance for Cd1-xMnxGeAs2 (x=0÷0.36) by 
the method of interactive graphical plotting.
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