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The external perturbations can be temperature, light irradiation, 
pressure, and pulsed magnetic fields all may change the magnetic 
coupling interaction in transition metal systems. Here, we use pressure 
as external force to study magneto -structural correlation.

We report here the structure and magnetic behavior of one 1-D helical 
chain iron complex [FeII(μ-bpt)(μ- COOC5H4N)‧1/2 H2O]n (bpt=3,5-
bis (pyrid-2-yl)-1,2,4-triazole), [1], in ambient conditions and under 
hydrostatic pressure. The complex was crystallized in a tetragonal 
space group I41/a at ambient pressure, each iron atoms linked by one 
bpt and one isonicotinic acid legend, which form an infinite helical 
chain along the screw axis 41 at c-axis direction. The iron atoms are 
iron (2+) high spin state with distorted N4O2 coordinated shell.    

High-pressure powder X-ray diffraction experiments from 0.03GPa 
to 2.79GPa pressure were carried out to understand precisely the 
correlation between the structure and magnetic behavior. The careful 
analysis of a series high pressure structures showing a pressure-
induced shrinking more than 10% along the chain direction, which can 
describe as spring compressed 10%. This make the iron-iron distance 
from 4.445(2) Å at ambient pressure change significantly to 4.083(6) Å 
at around 2GPa. Magneto -structural correlation will be discussed .The 
coordinated shells of Iron (N4O2) also decrease 0.11 Å about averagely. 
The spin state of iron and magnetic property of title compound also will 
be shown in this report 

[1] S-M Chen, Structure and Magnetic Properties of Dinuclear metal Complexes 
with a Tetradentate bpt Ligand. Ph. D. Thesis, 2009, National Taiwan University, 
Taipei, Taiwan. R.O.C.
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The first finding of a non-MDO mica polytype where two types of 
layers coexist is here reported. The sample is a 5-layer ferriphlogopite 
from Ruiz Peak, New Mexico, crystallizing in C2, a = 5.3146(2) Å, 
b = 9.2063(3) Å, c = 49.730(2) Å, β = 92.031(4)°. Data collection 
was performed on a Mar345 equipped with image plate detector, with 
completeness of 99.4 % up to resolution 0.8 Å, 5049 unique reflections 
of which 3195 observed, and redundancy 13.6. The homo-octahedral 
stacking sequence was determined by PID analysis [1] and corresponds 
to the 5M3 polytype [2]. The structure model was obtained from the 
atomic coordinates of the 1M polytype by applying the stacking vectors, 
and refined with Jana2006 [3], to R(obs) = 7.03%. A reliable model for 
the distribution of the octahedral cations (Mg2+, Al3+, Fe3+, Ti4+) in the 
9 independent sites cannot be obtained by structure refinement; the 
occupation of these sites has instead been estimated by exploiting 
the OD nature of mica polytypes [4]. An iterative computation of 
the Fourier map from an hybrid data set including computed family 
diffractions (k = 3n), which correspond to the family structure in which 
all octahedral site have the same content, and observed non-family 
diffractions, followed by adjustment of the model to reproduce the 
computed map, has been performed; this unambiguously resulted in 
two layers out of three having a prominent peak in a cis site, all the 
layers being meso-octahedral. The OD symbol for this polytype is |1.5 
5.3 5.5 1.1 3.1|.

The 5M3 polytype with all layer of type M1 (origin of the octahedral 
sheet in the trans site) belongs to the 3T structural series. In this 

case, however, the presence of M2 layers testifies the occurrence of 
structural adjustments at the polytype formations stage [5]. The original 
components could have been a two equal basic structures (1M or 2M1) 
differently oriented, or two different basic structures (1M or 2M1 or 3T). 
The possible formation mechanism is currently under investigation.

[1] H. Takeda, Acta Crystallogr. 1967, 22, 845-853. [2] H. Takeda, Ross M., 
Am. Mineral. 1975, 80, 715-724. [3] V. Petricek, M. Dusek, L. Palatinus, Jana 
2006. The crystallographic computing system 2006. [4] K. Dornberger-Schiff, 
K.O. Backhaus, S. Ďurovič, Clays Clay Minerals 1982, 30, 364-374. [5] M. 
Nespolo, Clays Clay Minerals 2001, 49, 1-23.
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Different categories of Euclidean groups are established according 
to an analysis of the Fundamental theorem on Euclidean groups 
which is formulated and proved. The first division is into the space, 
subperiodic and site point groups. According to the character of the 
translation subgroup, the groups with the discrete, continuous and 
semicontinuous lattice are distinguished. The groups are classified as the 
crystallographic, noncrystallographic  and partially crystallographic 
groups. In this connection, the concepts of crystallographic and space 
groups are amended. 

Geometric classes and their splitting into arithmetic classes are 
defined as usual. Arithmetic classes are the natural classification 
units and the groups of such a class are distinguished by systems of 
nonprimitive translations in Seitz symbols for Euclidean operators. If 
the geometric class is reducible (irreducible) then the arithmetic class 
is either reducible or decomposable (irreducible). The factorization of 
the groups of decomposable or reducible classes by partial translation 
subgroups leads to groups of lower dimensions of the translation 
subgroup. 

The class of the systems of nonprimitive translations which differ 
only by shift functions define an extension  class within which the 
groups differ only by their location. Groups of the extension class have 
the same Hermann-Mauguin symbol and the same symmetry diagram. 
It is shown how to take the group location into consideration which 
is not done in Vol. A of IT. As a result, the data about subgroups are 
incomplete. The location of groups has been first considered in Vol. E 
of IT and in a software attachment GI * KoBo-1 to Vol. D of IT.    

Diagrams of the Young type are suggested for a rough classification 
of groups in arbitrary dimensions. The groups up to three dimensions  
are considered in detail as the groups of material physics and a unique 
system of Hermann-Mauguin symbols  for them is developed. 

Keywords: seitz symbols, extension class, group location
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Crystallographic patterns in three-dimensional euclidean space (E3) 
can be generated via orbits of motifs under the action of certain two-
dimensional discrete groups acting in hyperbolic space (H2) followed 
by “wrapping” of the hyperbolic planar pattern onto three-periodic 
hyperbolic surfaces (e.g. minimal surfaces). This approach underlies 
the EPINET project [1] described in detail elsewhere [3], [4], [5]. 

We describe an explicit mapping between H2 and E3, mediated by 
three-periodic hyperbolic surfaces embedded in E3, that allows unique 
identification of a discrete hyperbolic group plus a surface with a space 
group. 

The approach leads to the following concepts. First, point and 
plane groups describe isometries of the 2D sphere and euclidean plane 
respectively. Orbifolds offer a single coherent concept for point, plane 
and “saddle” groups, where the latter are isometries of H2. Second, 
we present a simple taxonomy of these groups into 8 classes via 
orbifolds, based on the generic topological and conformal structure of 
the orbifold,. Third, we define crystallographic saddle groups (“sponge 
groups”) -- analogous to crystallographic point groups. These include 
those hyperbolic orbifolds whose orbits on embedded surfaces induce 
space groups in E3. We present a number of sponge groups within all 
eight classes, including the most symmetric example. These results 
allow many of the 230 space groups to be described in a concise 
manner, combining 2D isometries with surface topology. 

[1] S. Hyde,V. Robins, S. Ramsden, http://epinet.anu.edu.au. [2] S.J. Ramsden, 
V. Robins, S.T. Hyde, Acta Cryst, 2010, A65, 81-108. [3] V. Robins, S. Ramsden, 
S. Hyde, Physica A, 2004, 339, 173-180. [4] V. Robins, S.J. Ramsden S.T. Hyde, 
Eur Phys J B 2004, 39, 365-375. 
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Clifford’s geometric algebra [1] efficiently encodes geometric 
information in terms of compact algebraic expressions. These 
expressions allow to easily retrieve all geometric properties (radius, 
position, center, normal directions, orientation, distances, angles, 
…), and one can simultaneously use these expressions as operators 
for transformations like reflections, rotations, roto-reflections, 
inversions (at points and spheres), roto-reflections, glide and screw 
transformations, etc. Products allow to combine objects, to intersect 
them, to compute their relative location and angles, etc. Thus geometric 
algebra has already been successfully applied to the description of 
crystallographic symmetry [2], [3]. We now extend this treatment by 
studying the description of offset subspaces in the geometric algebra 
of projective space Cl(Rn+1) and in the conformal model of Euclidean 
geometry, i.e. in Cl(Rn+1,1), see e.g. [4]. In particular, crystal planes in 
any dimension are such offset subspaces. The problem of defining 
a kD plane in terms of k+1 points on the plane is easily solved by 
taking the outer product of these points. Reciprocal vectors appear as 
support vectors of crystal planes, identical to the Euclidean parts of 
dual vectors describing hyperplanes in the above model algebras [5]. 

We mainly address crystallographers, who want to know how 
to successfully express their problems in the new comprehensive 
mathematical language of Clifford geometric algebra. We see a 
need for this, because so far many mainstream crystallographers are 
relatively unfamiliar with Clifford geometric algebra [6]. We focus 
on expressing key notions in standard crystallography, which clearly 
demonstrate how to employ the powerful invariant and dimension-

independent tools of Clifford geometric algebra. Thus we explain 
e.g. how to turn crystallographic Miller indexes into multivector 
expressions for crystallographic planes, and based on this how to 
directly compute crystal plane d-spacing, phase angles of structure 
factors, reflection conditions for the occurrence of Bragg reflections, 
interfacial angles, and the like.

[1] L. Dorst, D. Fontijne, S. Mann. Geometric Algebra for Computer Science: 
An Object-oriented Approach to Geometry. Morgan Kaufmann Series in 
Computer Graphics. San Francisco, 2007. [2] D. Hestenes, J. Holt Journal of 
Mathematical Physics 2007; 48, 023514. [3] E. Hitzer, C. Perwass. Advances 
in Applied Clifford Algebras 2010; 20(3-4), 631-658. [4] H. Li. Invariant 
Algebras and Geometric Reasoning. World Scientific: Singapore, 2008 [5] E. 
Hitzer. Math. Meth. Appl. Sci. 2011, online first. [6] E. Hitzer, H.Grimmer. 
Introduction to quaternions and geometric algebra and their applications 
in crystallography. Lecture at MaThCryst Satellite Conference at ECM 26 
on Minimal Surfaces, Aperiodic Structures, Geometric Algebra, Darmstadt, 
Germany, 2010, 27–29.
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We studied the phase stability of Mg(BH4)2 by means of symmetry 
analysis  of different structures optimized via first-principles methods 
[1]. In particular, we focused on the symmetry relations between  
space groups I41/amd (IT 141), I-4m2(IT 119) and F222 (IT 22) as 
one chain of subgroups and groups I41/amd (IT 141), Fddd (IT 70) and 
F222 (IT 22) as the second chain of subgroups. By that analysis, based 
on the theory of space groups and their representations (symmetry 
analysis method –SAM [2]) we found all transformations from the 
parent structure, described by the high symmetry group, to the 
structures with symmetries belonging to the appropriate subgroups. 
The main interesting result of the symmetry transformation provided 
the displacements of the atoms from their initial positions (by polar 
vector type SAM), and the ordering of clusters localized on given 
positions (by second rank tensor type SAM). The deformations of 
BH4 clusters have been investigated by these two ways. Both vector 
and tensor type methods lead to the same description of ordering of 
deformed clusters, with the number of free parameters reduced to the 
same necessary minimum. Moreover this minimal number of free 
parameters has been used in the procedure of finding the lowest total 
energy for each proposed model of Mg(BH4)2 structure as follows. 
For every transformation from parent group to it subgroup, from 
symmetry point of view, each atom is allowed to move only in a 
strictly given direction (a displacement vector). This permits us to 
reduce the number of parameters we have to consider when looking for 
the minimum energy of the system under investigation. For example: 
the transition between groups (IT 141) and (IT 119) for Mg(BH4)2 in 
general is described by 264 free, independent parameters (88 atoms 
in the unit cell, each can move along x,y,z axis). Using the symmetry 
analysis this number is reduced to only 9 coefficients and in the case 
of transition between (IT 119) and (IT 22) this number becomes 12 
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