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Crystallographic patterns in three-dimensional euclidean space (E3) 
can be generated via orbits of motifs under the action of certain two-
dimensional discrete groups acting in hyperbolic space (H2) followed 
by “wrapping” of the hyperbolic planar pattern onto three-periodic 
hyperbolic surfaces (e.g. minimal surfaces). This approach underlies 
the EPINET project [1] described in detail elsewhere [3], [4], [5]. 

We describe an explicit mapping between H2 and E3, mediated by 
three-periodic hyperbolic surfaces embedded in E3, that allows unique 
identification of a discrete hyperbolic group plus a surface with a space 
group. 

The approach leads to the following concepts. First, point and 
plane groups describe isometries of the 2D sphere and euclidean plane 
respectively. Orbifolds offer a single coherent concept for point, plane 
and “saddle” groups, where the latter are isometries of H2. Second, 
we present a simple taxonomy of these groups into 8 classes via 
orbifolds, based on the generic topological and conformal structure of 
the orbifold,. Third, we define crystallographic saddle groups (“sponge 
groups”) -- analogous to crystallographic point groups. These include 
those hyperbolic orbifolds whose orbits on embedded surfaces induce 
space groups in E3. We present a number of sponge groups within all 
eight classes, including the most symmetric example. These results 
allow many of the 230 space groups to be described in a concise 
manner, combining 2D isometries with surface topology. 

[1] S. Hyde,V. Robins, S. Ramsden, http://epinet.anu.edu.au. [2] S.J. Ramsden, 
V. Robins, S.T. Hyde, Acta Cryst, 2010, A65, 81-108. [3] V. Robins, S. Ramsden, 
S. Hyde, Physica A, 2004, 339, 173-180. [4] V. Robins, S.J. Ramsden S.T. Hyde, 
Eur Phys J B 2004, 39, 365-375. 
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Clifford’s geometric algebra [1] efficiently encodes geometric 
information in terms of compact algebraic expressions. These 
expressions allow to easily retrieve all geometric properties (radius, 
position, center, normal directions, orientation, distances, angles, 
…), and one can simultaneously use these expressions as operators 
for transformations like reflections, rotations, roto-reflections, 
inversions (at points and spheres), roto-reflections, glide and screw 
transformations, etc. Products allow to combine objects, to intersect 
them, to compute their relative location and angles, etc. Thus geometric 
algebra has already been successfully applied to the description of 
crystallographic symmetry [2], [3]. We now extend this treatment by 
studying the description of offset subspaces in the geometric algebra 
of projective space Cl(Rn+1) and in the conformal model of Euclidean 
geometry, i.e. in Cl(Rn+1,1), see e.g. [4]. In particular, crystal planes in 
any dimension are such offset subspaces. The problem of defining 
a kD plane in terms of k+1 points on the plane is easily solved by 
taking the outer product of these points. Reciprocal vectors appear as 
support vectors of crystal planes, identical to the Euclidean parts of 
dual vectors describing hyperplanes in the above model algebras [5]. 

We mainly address crystallographers, who want to know how 
to successfully express their problems in the new comprehensive 
mathematical language of Clifford geometric algebra. We see a 
need for this, because so far many mainstream crystallographers are 
relatively unfamiliar with Clifford geometric algebra [6]. We focus 
on expressing key notions in standard crystallography, which clearly 
demonstrate how to employ the powerful invariant and dimension-

independent tools of Clifford geometric algebra. Thus we explain 
e.g. how to turn crystallographic Miller indexes into multivector 
expressions for crystallographic planes, and based on this how to 
directly compute crystal plane d-spacing, phase angles of structure 
factors, reflection conditions for the occurrence of Bragg reflections, 
interfacial angles, and the like.

[1] L. Dorst, D. Fontijne, S. Mann. Geometric Algebra for Computer Science: 
An Object-oriented Approach to Geometry. Morgan Kaufmann Series in 
Computer Graphics. San Francisco, 2007. [2] D. Hestenes, J. Holt Journal of 
Mathematical Physics 2007; 48, 023514. [3] E. Hitzer, C. Perwass. Advances 
in Applied Clifford Algebras 2010; 20(3-4), 631-658. [4] H. Li. Invariant 
Algebras and Geometric Reasoning. World Scientific: Singapore, 2008 [5] E. 
Hitzer. Math. Meth. Appl. Sci. 2011, online first. [6] E. Hitzer, H.Grimmer. 
Introduction to quaternions and geometric algebra and their applications 
in crystallography. Lecture at MaThCryst Satellite Conference at ECM 26 
on Minimal Surfaces, Aperiodic Structures, Geometric Algebra, Darmstadt, 
Germany, 2010, 27–29.
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We studied the phase stability of Mg(BH4)2 by means of symmetry 
analysis  of different structures optimized via first-principles methods 
[1]. In particular, we focused on the symmetry relations between  
space groups I41/amd (IT 141), I-4m2(IT 119) and F222 (IT 22) as 
one chain of subgroups and groups I41/amd (IT 141), Fddd (IT 70) and 
F222 (IT 22) as the second chain of subgroups. By that analysis, based 
on the theory of space groups and their representations (symmetry 
analysis method –SAM [2]) we found all transformations from the 
parent structure, described by the high symmetry group, to the 
structures with symmetries belonging to the appropriate subgroups. 
The main interesting result of the symmetry transformation provided 
the displacements of the atoms from their initial positions (by polar 
vector type SAM), and the ordering of clusters localized on given 
positions (by second rank tensor type SAM). The deformations of 
BH4 clusters have been investigated by these two ways. Both vector 
and tensor type methods lead to the same description of ordering of 
deformed clusters, with the number of free parameters reduced to the 
same necessary minimum. Moreover this minimal number of free 
parameters has been used in the procedure of finding the lowest total 
energy for each proposed model of Mg(BH4)2 structure as follows. 
For every transformation from parent group to it subgroup, from 
symmetry point of view, each atom is allowed to move only in a 
strictly given direction (a displacement vector). This permits us to 
reduce the number of parameters we have to consider when looking for 
the minimum energy of the system under investigation. For example: 
the transition between groups (IT 141) and (IT 119) for Mg(BH4)2 in 
general is described by 264 free, independent parameters (88 atoms 
in the unit cell, each can move along x,y,z axis). Using the symmetry 
analysis this number is reduced to only 9 coefficients and in the case 
of transition between (IT 119) and (IT 22) this number becomes 12 
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