completely included in the dimerization surface.

Furthermore, we carried out a variety of physicochemical measurements (ITC, DLS and the analytical ultracentrifugation) to elucidate the functional aspects of the multimerization property of Rch1. As a result, we found out a valid correlation between the multimerization state of Rch1 and its NLS recognition property, where the IBB domain of Rch1 plays a role to control the multimerization. More detailed scenario about the NLS recognition mechanism of the Rch1 will be presented in the poster session.

Poster Sessions

MS23.P01

Recent practices on sulfur SAD phasing using soft X-rays
Zhi-Jie Liu, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, (China). E-mail: zjliu@ibp.ac.cn

A single crystal X-ray diffraction data set contains critical three-dimensional structural information about the molecules which makeup the crystal. This information is the major direct experimental source for the subsequent elucidation of spatial structures of the crystallized molecules.

In recent years, single wavelength anomalous diffraction (SAD) phasing has become the major method used in macromolecular structure determination. Sulfur atoms are natively present in most protein molecules and their anomalous scattering signal when measured with soft X-rays makes them an ideal phasing probe. With the advances in methodology and diffraction data collection hardware, sulfur SAD phasing has contributed to many de novo crystal structure determinations. We have been actively trying this phasing method in routine crystal structure determinations. Several new structures have been determined by the S-SAD method with the data collected using either home lab Cr X-rays or synchrotron X-rays (Photon Factory beamlines 1A and 17A). Details of the data collection, data processing and phasing process will be presented.

Keywords: S-SAD, soft X-rays

MS23.P02

Multivariate methods for density modification of SAD phased maps
Pavel Skubak, Willem-Jan Waterreus, Navraj S. Pannu. *Department of Biostructural Chemistry, Leiden University, Leiden (The Netherlands)*. E-mail: p.skubak@chem.leidenuniv.nl

Recently, we have derived and implemented a multivariate likelihood distribution for phase combination of density modified phases with initial SAD experimental phases [1] and a technique to reduce bias in the phase combination process [2].

Preliminary results suggest that the power of these methods can be further improved by incorporation of structure factors from a partially built model into the SAD multivariate function. The new function is used for simultaneous refinement and density modification which is iterated with automated model building.

Many structures can be built automatically by the Crank software suite [3] that previously failed thanks to the combination of these new methods.

Keywords: density modification, model building, refinement

MS23.P03

Phasing in the Home Laboratory
Joseph D. Ferrara, Pierre Le Magueres, Michael Murray, James W. Pfugrath, Cheng Yang. Rigaku Americas Corp. 9009 New Trails Drive, The Woodlands, TX, 77381 (USA). E-mail: joseph.ferrara@rigaku.com

Many examples of S-SAD and Se-SAD phasing have been reported with diffraction data collected away from absorption edges with copper radiation (1.54 Å) as well as at the K absorption edge of selenium with synchrotron radiation (0.979 Å). Chromium radiation (2.29 Å) has been available for in-house data collection for a few years now. As a result, a number of successful SAD experiments using Cr radiation have been performed by several groups [1], [2]. Furthermore, unpublished results from the PDB [3] indicate a higher utilization than the publication record shows. However, Cr radiation has not been fully utilized despite being ideally suited for measuring anomalous signals from weak anomalous scatterers such as sulfur, selenium, calcium, and other atoms commonly found in protein crystals.

We explore why softer X-rays generated by a Cr anode may be better than a synchrotron source. Beam stability, radiation damage, and mechanical issues are less of a problem with in-house experiments. The human psychology of travel and use of an unfamiliar experimental station may also be avoided with an in-house system. This is a cost effective method of single crystal X-ray diffraction data collection and structure determination that is especially useful when time is of the essence and synchrotron time is unavailable due to shutdowns and maintenance. In the end the tortoise may win the race.

With the addition of Cr radiation to the crystallographer’s toolkit, in-house X-ray sources can routinely provide at least two wavelength options. This report also discusses the results of phasing by combining diffraction data from both Cu and Cr-collected data sets, as well as data sets collected with only Cu radiation.

Keywords: density modification, model building, refinement

MS23.P04

Structural studies of serine acetyltransferase 1 from Entamoeba histolytica

Keywords: sulfur, SAD, phasing
Cysteine plays a major role in growth and survival of the human protozoan parasite Entamoeba histolytica. In bacteria and plants, cysteine is synthesized by a two step cysteine biosynthetic pathway catalyzed by serine acetyltransferase (SAT) and O-acetylsereine sulphydrylase (OASS) in first and second step respectively. These two enzymes interact to form a decameric cysteine synthase complex. The pathway is regulated by two steps; association and dissociation of cysteine synthase complex and feedback inhibition of SAT by cysteine but this mechanism is absent in E. histolytica [1]. The OASS structure from E. histolytica revealed a C-terminal end helix which occupies its own groove near the catalytical cavity and it was proposed earlier this may be the reason for loss of interactions between OASS and SAT [2]. We present here the crystal structure of serine acetyltransferase isoform1 from E. histolytica (EhSAT1) at 1.77 Å, in complex with its substrate serine at 1.59 Å and inhibitor cys at 1.78 Å resolutions. All the three forms crystallized in R3 space group and contain one molecule per asymmetric unit. This is the first crystal structure of a trimeric SAT, unlike hexameric SAT structures reported in E.coli and H. influenzae. The difference in oligomeric state is due to the differently oriented N-terminal region of the EhSAT1, which has very low sequence similarity to known structures and also differs in charge distribution at trimeric interface. The Ser and Cys bind to the same site in EhSAT1 which confirms that Cys is a competitive inhibitor of Ser. The disordered C-terminal region and the loop near the active site are responsible for solvent accessible acetyl Coenzyme-A binding site and thus lose inhibition to acetyl Co-A by the feedback inhibitor Cys. Docking and fluorescence studies show that EhSAT1 C-terminal mimicking peptides can bind to o-acetyl serine sulhydrylase (EhOASS), while native C-terminal peptide does not show any binding. To test further, C-terminal end of EhSAT1 was mutated and found that it inhibits EhOASS, confirming modified EhSAT1 can bind to EhOASS. Thus it is clear that E. histolytica has modded its C-terminal to escape the complex regulatory mechanism just by replacing two residues [3].

Keywords: enzyme, crystal, docking.

MS23.P05

Protein structure determination using Saturn A200 CCD at SRpring-8 by MAD phasing

Raita Hirose,* Go Ueno,* Yuki Nakamura,† Koji Tomoo,* Toshimasa Ishida,* Masaki Yamamoto,* Kenzaku Hamada,* Rigaku Corporation, Tokyo, (Japan). *RIKEN SRpring-8 Center, Hyogo, (Japan). †Department of Physical Chemistry, Osaka University of Pharmaceutical Sciences, Osaka, (Japan). E-mail: r-hirose@rigaku.co.jp

X-ray area detectors consisting of CCD array are now indispensable to synchrotron beamlines for macromolecular crystallography owing to the high throughput and low noise. The CCD detector enables rapid collection of high resolution data at the synchrotron and also in the high-brilliance home laboratory.

Saturn A200 is the latest 2x2 CCD array detector of Rigaku and employs an array of four CCD chips providing a 203mm x 203mm active area. We examined the performance of the Saturn A200 at the BL26B1 beamline at the SPring-8 by structure determination of an enzyme BxI, beta-xyllosidase from Streptomyces thermoviolaceus. A three-wavelength MAD dataset of a SeMet crystal of BxI and a single-wavelength dataset of a native BxI crystal were collected and processed. After automated procedure of CCP4 suite, 14 of 20 selenomethionine sites were found in an asymmetric unit and resulting electron density map was auto-traceable.

We realized that the Saturn A200 has sufficient performance for MAD phasing and structure refinement. We will study further and continue to improve the detector.

Keywords: CCD detector, protein crystallography application, MAD phasing

MS23.P06

PSI-Biology partnership projects at the joint center for structural genomics

A.M. Deacon,ab L. Jaroszewski,b,c A. Godzik,ab S.A. Lesley,b,c IA . Wilson,b,c d Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, (USA). eProgram on Bioinformatics and Systems Biology, Sanford-Burnham Medical Research Institute La Jolla, CA, (USA). fGenomics Institute of the Novartis Research Foundation, San Diego, CA, (USA). gDepartment of Molecular Biology, The Scripps Research Institute, La Jolla, CA, (USA). Email: adeacon@slac.stanford.edu

The Joint Center for Structural Genomics (JCSG) is one of four Centers for High-Throughput Structure Determination (CHTSD) funded as part of the NIH/NIGMS PSI-Biology program. Ten Consortia for High-Throughput-Enabled Structural Biology Partnerships (SBPs) are also funded as part of the PSI-Biology Network. The SBPs are focused on challenging and high-impact biological topics and have each proposed a set of biologically relevant targets for structure determination by the CHTSDs.

The JCSG is partnered with two SBPs. In collaboration with Dr. R. Fletterick and colleagues, we are exploring the regulatory transcription factor machinery essential to embryonic stem cells and induced pluripotent stem cells and, with Dr. J. Williamson and Dr. D. Salomon, we are investigating the role of ribonucleaseprotein complexes that regulate changes in gene expression accompanying T-cell activation. Both of these partnership projects involve large multi-domain human proteins, protein complexes and protein-nucleic acid complexes. We have also developed a strategy to identify and structurally characterize novel domains with these target proteins based on extensive bioinformatic analyses of the prioritized target lists. Both bacterial and mammalian protein production are being pursued for structure determination. In parallel, our partners are identifying and characterizing stable protein and protein/nucleic acid complexes, which represent promising structural targets for the JCSG pipeline. As new structures are solved, we work closely with our partners to design follow-up biological experiments. We will give an overview of these two projects outlining our strategy and highlighting the progress to date, including the first structures to emerge from these new collaborations.

The JCSG is funded by NIGMS/PSI, U54 GM094586 and U54 GM074898. SSRL operations are funded by DOE BES, and the SSRL SMB program by DOE BER, NIH NCRR BTP and NIH NIGMS.

Keywords: high throughput structural biology, DNA RNA binding protein, stem cells

C353