crystalline state towards smaller concentrations as compared to the MA case. At some concentration of SA/MA a partial aggregation (regions with liquid crystals of acid molecules in the solution) is observed as a deviation of the scattering curves from the Guinier law at the smallest q-values. As the concentration increases, the SANS signal from these aggregates becomes rather distinct, and the corresponding characteristic size can be roughly estimated from an additional Guinier-type term as ~10 nm. The further increase in SA/MA concentration leads to the alignment of these aggregates (transition to a smectic phase), which is reflected in the appearance of the diffraction peak at q ~ 2 nm\(^{-1}\) (corresponding correlation length ~3.2 nm). The position of the peak shifts to higher q-values (smaller distance between aggregates) with an increase in the acid concentration. The possibilities of the wide-angle diffraction for the study of the observed liquid crystalline phase in solutions of linear molecules with comparatively short alkane chains are considered.

The formation of the found LC-phase in bulk solutions of mono-carboxylic acids is an important factor, which influences the stabilization efficiency of the studied acids in colloidal solutions of magnetic nanoparticles.

[1] M.V. Avdeev, D. Bica, L. Vekas, V.L. Aksenov, A.V. Feoktystov, O. Marinica, L. Rosta, V.M. Garamus, R. Willumeit, “Institute of Crystallography of the Russian Academy of Sciences, Leninsky pr. 59, Moscow, 119333, (Russia), A.N. Belozersky Institute of Physico-Chemical biology, Moscow State University, Vorobiovy Gory, Build. ‘A’, Moscow, 119991, (Russia), EMBL, Hamburg Outstation, Notkestraße 85, D-22603 Hamburg, (Germany), E-mail: viwopixs@yahoo.co.uk

Keywords: SANS, surfactant solutions, liquid crystalline phase

MS26.P03

Virus matrix protein M1: SAXS data analysis and modeling

E. V. Shtrykova, L. A. Baratova, D. I. Svergun, Institute of Crystallography of the Russian Academy of Sciences, Leninsky pr. 59, Moscow, 119333, (Russia), A.N. Belozersky Institute of Physico-Chemical biology, Moscow State University, Vorobiovy Gory, Build. ‘A’, Moscow, 119991, (Russia), EMBL, Hamburg Outstation, Notkestraße 85, D-22603 Hamburg, (Germany), E-mail: viwopixs@yahoo.co.uk

Structural analysis of the influenza A virus full-length matrix M1 protein was performed using small-angle X-ray scattering (SAXS). The structure of the M1 protein macromolecules in solution was for the first time reconstructed using advanced methods of SAXS data analysis and interpretation [1-6]. The detailed analysis of the scattering data and modeling revealed a structurally polarized molecule with a compact NM-fragment and weakly ordered C-terminal domain. These structural peculiarities explain the ability of the matrix M1 protein to mediate the multistep process of cell infection due to flexibility of the C-terminal regions.

Keywords: protein, modelling, structure

MS26.P04

SAXS study of phase separation process in the SiO\(_2\)-SnO\(_2\) nanostructured materials

René Guinebretière, Matthieu Dumoulin, Elsa Thune, Cyrille Rochas, ESPCT USMR CNRS 6638, ENSCI, Centre Européen de la Céramique, 12 rue Atlantis, 87068 Limoges, (France), CERMAV, Notkestraße 85, D-22603 Hamburg, (Germany), E-mail: viwopixs@yahoo.co.uk

SAXS study of phase separation process in the SiO\(_2\)-SnO\(_2\) nanostructured materials

Poster Sessions