MS36.P22

Crystal Structure of *Actinobacillus pleuropneumoniae* HMWIC glycosyltransferase

Fumihiro Kawai, a Susan Grass, b Youngheang Kim, a Kyoung-Jae Choi, a Joseph W. St. Géme, III, a Hye-Jeong Yeo, a “Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, a Departments of Pediatrics and Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC 27710, b Structural Biology Center, Argonne National Laboratory, Argonne, IL 60439.

E-mail: fkawai@uh.edu

The *Haemophilus influenzae* HMW1 adhesin is an N-linked glycoprotein that mediates adherence to respiratory epithelium, an essential early step in the pathogenesis of *H. influenzae* disease. HMW1 is glycosylated by HMW1C, a novel glycosyltransferase in the GT41 family that creates N-glycosidic linkages between glucose and galactose at asparagine residues and di-glucose linkages at sites of glucose modification. Here we report the crystal structure of *Actinobacillus pleuropneumoniae* HMW1C (ApHMW1C), a functional homolog of HMW1C. The structure of ApHMW1C contains an N-terminal domain (AAD) fold and a C-terminal GT-B fold with two Rossmann-like domains and lacks the tetra repeat fold characteristic of the GT41 family. The GT-B fold harbors the binding site for UDP-hexose, and the interface of the AAD fold and the GT-B fold forms a unique groove with potential to accommodate the acceptor protein. Structure-based functional analyses demonstrated that the HMW1C protein shares the same structure as ApHMW1C and provided insights into the mechanism of HMW1C glycosylation of HMW1.

This work was supported by NIH grant AI068943 to H.J.Y. and the Robert A. Welch Foundation grant E-1616.

Keywords: *Haemophilus influenzae*, HMW1C, glycosyltransferase, two-partner secretion

MS36.P23

Structural characterization of the fructose 1,6-bisphosphatase (II) from *M. tuberculosis*

Hiten J. Gutka, a Scott G. Franzblau, a Farahnaz Movahedzadeh, a Cele Abad-Zapatero, a "Institute for Tuberculosis Research, University of Illinois at Chicago (UIC), Chicago, IL, (USA), a Department of Molecular Chemistry and Pharmacognosy, UIC, Chicago, IL, (USA), a Centro de Investigaciones Biológicas (CIB-CSIC), Madrid (Spain).

E-mail: caz@uic.edu

In spite of the availability of effective chemotherapy and Bacille-Calmette-Guérin (BCG) vaccine, tuberculosis remains a widespread infection world-wide. Many factors such as, human immunodeficiency virus (HIV) co-infection, drug resistance, lack of patient compliance with chemotherapy, delay in diagnosis, variable efficacy of BCG vaccine among others contribute to the mortality due to tuberculosis.

New advances in understanding the biology of *Mycobacterium tuberculosis* (Mtbb) and availability of functional genomic tools, such as microarray and proteomics, in combination with modern approaches have not resulted in new drug in the past 30 yr. The problem is compounded by the appearance and persistence of resistance strains. Therefore, there is an urgent need to identify new drug targets in *Mycobacteria* leading to new drugs. In general, gene products involved in mycobacterial metabolism, persistence, transcription, cell wall synthesis and virulence could be possible and attractive targets for the development of new drugs.

The completion of the *Mtbb* genome sequence allowed the identification of genes that were predicted to encode enzymes for most central metabolic pathways, however no fructose 1,6-bisphosphatase was assigned. In a previous study, we had identified Rv1099c to encode this missing link [1], showing that Rv1099c encodes a major FBPase in *M. tuberculosis*. The corresponding gene has been shown to be attenuated in vivo in a Transposon Site Hybridization screen (TraSH) [2] which makes Mtbb FBPase an attractive drug target.

We have previously reported the cloning, expression and purification to homogeneity of the purified enzyme and present the initial biochemical characterization [3]. Mtbb FBPase displayed Michaelis-Menten kinetics for the substrate fructose 1, 6-bisphosphate. Further characterization of the enzyme has shown that FBPase activity is absolutely dependent on the divalent cations Magnesium or Manganese, where replacing with other bivalent metal ions resulted in loss of activity.

Mtbb FBPase has been crystallized in the apo form by hanging-drop vapour diffusion method. Crystals diffracted to a resolution of 2.7Å and belonged to the hexagonal space group P6,22, with unit-cell parameters a=b=131.3, c=143.2Å. The structure has been solved by molecular replacement using *E. coli* GlpX as a probe (PDBID: 3dIr) [4]. The structure of the GlpX-F6P complex has also been solved and both structures have been refined. Structural results can be related to the other available structures of class II FBPs.

Keywords: mycobacterium tuberculosis, gluconeogenesis, Fructose 1,6– bisphosphatase.

MS36.P24

Crystal structure of SmeT bound to the biocide Triclosan

Federico M. Ruiz, a Alvaro Hernandez, a Antonio Romero, a José Luis Martinez, a Centro de Investigaciones Biológicas (CIB-CSIC), Madrid (Spain). a Centro Nacional de Biotecnología (CNB-CSIC), Madrid (Spain).

E-mail: fruiiz@cib.csic.es

The wide utilization of biocides for different purposes, including toothpastes, soaps, house-hold compounds surfaces’ disinfectants and even their use as additives of different materials to avoid their colonization by micro-organisms, poses a concern on the impact of these compounds on natural bacterial populations. In recent years, the possibility that widely-used biocides might co-select for antibiotic resistance has been suggested to pose a potential risk to the successful treatment of infectious diseases. In vitro experiments have shown that exposure of bacterial populations to certain biocides, such as triclosan, indeed leads to selection for mutants with reduced susceptibility to antibiotics. On most occasions this resistance has been acquired as a consequence of the stable de-repression of MDR efflux pumps.

We have explored the possibility that the widely used biocide triclosan might induce antibiotic resistance using as a model the opportunistic pathogen *Stenotrophomonas maltophilia*. Biochemical,
functional and structural studies were performed, focusing on SmeDEF, the most relevant antibiotic- and triclosan-removing multidrug efflux pump of S. maltophilia. Expression of smeDEF is regulated by the repressor SmeT. Triclosan released SmeT from its operator and induces the expression of smeDEF, thus reducing the susceptibility of S. maltophilia to antibiotics in the presence of the biocide. The structure of SmeT bound to triclosan is described. Two molecules of triclosan were found to bind to one subunit of the SmeT homodimer. The binding of the biocide stabilizes the N terminal domain of both subunits in a conformation unable to bind DNA. This complex structure is the first structural evidence of the ability of triclosan to act as an effector via its binding to a transcriptional regulator (SmeT). Given that SmeT mediates the susceptibility of Stenotrophomonas maltophilia to antibiotics by repressing SmeDEF expression, the present results provide information that aids our understanding of the molecular basis of biocide-induced antibiotic resistance.

Keywords: complex, ligand, antibacterial

MS36.P25

Interaction of the type III secretion chaperone SycD with YscY

Madeleine Schreiner, Hartmut Niemann, Department of Chemistry, Bielefeld University, Bielefeld (Germany). E-mail: madeleine.schreiner@uni-bielefeld.de

The type III secretion system (T3SS) is used by several Gram-negative pathogenic bacteria to inject cytotoxins, so called effector proteins, into the host cell to manipulate their host for their own benefit. The effector translocation occurs via a needle-like nanomachine, the injectosome, which spans the whole bacterial envelope. The effectors enter the cell through a pore within the host cell membrane formed by bacterial translocator proteins. Both the effectors and translocators need chaperones for their efficient translocation. T3S chaperones work without the need for ATP hydrolysis and are divided into three subclasses: class I chaperones interacting with effector proteins, class II chaperones interacting with translocator proteins and class III chaperones interacting with needle components.[1]

SycD (specific yop chaperone D) is the class II chaperone of the translocators YopB (Versinia outer protein B) and YopD from the enteropathogen Versinia enterocolitica. Additionally, SycD plays an important role in diverse regulatory processes of the T3SS and interacts with several other T3S proteins like TyeA, YscM2 or YscY. Like all structurally characterised class II chaperones SycD comprises an overall α-helical fold consisting of three tetratricopeptide repeats (TPR) providing a concave hydrophobic groove for translocator binding. SycD is known to form homodimers in solution involving the residues A61 and L65 of the first TPR as binding platform and formation of heterodimeric or even larger multi-protein complexes. The interaction between bacterial pathogens and the human host after infection may manifest itself as a chronic disease or as a latent (or dormant) infection, a state capable to evade host responses. The probability of reactivation from dormancy is strongly affected by the type of host immune response and it is significantly enhanced in immune-compromised patients, e.g. suffering from AIDS. Understanding and controlling the entry and exit from dormancy is important in the development of new anti-microbial therapies. Resuscitation of dormant bacteria is promoted by a set of peptidoglycan hydrolases, which are secreted from slowly replicating bacteria in the extra-cellular milieu. By cleaving peptidoglycans which constitute the cell wall, these hydrolases are thought to alter cell wall mechanical properties and favour cell division and/or release anti-dormancy factors. We have determined the crystal structures of various cell wall modelling enzymes [1-5]. The comprehension of the structural features associated to cell wall modelling enzymes activity/inhibition will provide the bases for the identification of molecules (pro-latency molecules) able to restrict bacterial life to the latent, non-dangerous state.

Keywords: latency, bacteria, structure.

MS36.P27

Muropeptide-driven revival from dormancy in bacterial pathogens: a structural perspective

Flavia Squeglia,1,a Alessia Ruggiero,1,a Daniela Marasco,1 Rita Berisio,1 Institute of Biostructure and Bioimaging, via Mezzocannone 16, I-80134 Napoli, (Italy). 1University Federico II of Naples, via Cintia, I-80126 Naples, (Italy). E-mail: alessia.ruggiero@unina.it

Post-translational modifications are a ubiquitous means of rapidly and reversibly modifying the physical-chemical properties of a protein, triggering a number of possible consequences: change of

Keywords: chaperone, interaction_interface, protein_complex

Cell wall modelling in pathogenic bacteria

Alessia Ruggiero,1,a Flavia Squeglia,1,a Luciano Pirone,1 Stefania Correale,1 Rita Berisio,1 Institute of Biostructure and Bioimaging, via Mezzocannone 16, I-80134 Napoli, (Italy). 1University Federico II of Naples, via Cintia, I-80126 Naples, (Italy). E-mail: alessia.ruggiero@unina.it

The interaction between bacterial pathogens and the human host after infection may manifest itself as a chronic disease or as a latent (or dormant) infection, a state capable to evade host responses. The probability of reactivation from dormancy is strongly affected by the type of host immune response and it is significantly enhanced in immune-compromised patients, e.g. suffering from AIDS. Understanding and controlling the entry and exit from dormancy is important in the development of new anti-microbial therapies. Resuscitation of dormant bacteria is promoted by a set of peptidoglycan hydrolases, which are secreted from slowly replicating bacteria in the extra-cellular milieu. By cleaving peptidoglycans which constitute the cell wall, these hydrolases are thought to alter cell wall mechanical properties and favour cell division and/or release anti-dormancy factors. We have determined the crystal structures of various cell wall modelling enzymes [1-5]. The comprehension of the structural features associated to cell wall modelling enzymes activity/inhibition will provide the bases for the identification of molecules (pro-latency molecules) able to restrict bacterial life to the latent, non-dangerous state.