H.Y-P. Hong, *Mater. Res. Bull.* **1976**, *1*,1173. [2] R. Roy, E.R. Vance, J. Alamo, *Mat. Res. Bull.* **1982**, *17*, 585-589. [3] A. Aatiq, M. Ménétrier, A. El Jazouli, C. Delmas, *Solid State Ionics* **2002**, *150*, 391-405. [4] A.I. Orlova, V.A. Orlova, A.V. Buchirin, K.K. Korchenkin, A.I. Beskrovnyi, V.T. Demarin, **2005**, *47*, 235-240.

Keywords: Antimony and Iron phosphate, Rietveld refinement, Raman and IR spectroscopy

## MS54.P18

Acta Cryst. (2011) A67, C579

## Structural study of ferromagnetic metal-insulator transition in hollandite chromium oxide, $K_2Cr_8O_{16}$

Akiko Nakao,<sup>a,b</sup> Y uki Yamaki,<sup>c</sup> Hironori Nakao,<sup>b</sup> Youichi Murakami,<sup>b</sup> Masahiko Isobe,<sup>d</sup> Yutaka Ueda,<sup>d</sup> *aResearch Center for Neutron Science* & Technology, Comprehensive Research Organization for Science and Society (CROSS), Tokai, (Japan). <sup>b</sup>Condense Matter Research Center and Photon Factory, Institute of Materials Structure Sience, High Energy Accelerator Research Organization (KEK), Tsukuba, (Japan). <sup>c</sup>Department of Physics, Tohoku University, Sendai, (Japan). <sup>d</sup>Institute for Solid State Physics, University of Tokyo, Kashiwa, (Japan). E-mail: a\_nakao@cross.or.jp

The hollandite oxides with the general chemical formula  $A_2M_8O_{16}$ (A = alkaline metal; M = transition metal) are a kind of mineral. They are mixed valent oxides with  $M^{3+}/M^{4+} = 1/3$  (an averaged valence of  $M^{3.75+}$ ). The crystal structure consists of the tubular  $M_8O_{16}$ -framework and A-cations at the tunnel sites of the  $M_8O_{16}$ -framework. The  $M_8O_{16}$ framework is constructed from the double chains (zigzag-chains) formed by sharing the edges of MO<sub>6</sub> octahedra. The chromium hollandite  $K_2Cr_8O_{16}$ , which at room temperature is tetragonal and a paramagnetic metal (PM), becomes ferromagnetic with  $T_{\rm C} = 180$  K [1], which is explained by the double exchange mechanism [2], but surprisingly this ferromagnetic metal phase undergoes a transition to an insulator at lower temperature, retaining ferromagnetism. The metal-insulator transition (MIT) at  $T_{MI} = 95$  K is quite unique; it has a metal (or half-metal) to insulator transition in a ferromagnetic state and the resulting low temperature phase is a rare case of a ferromagnetic insulator (FI). In order to elucidate this unique ferromagnetic MIT, it is crucial to study the crystal structure across the MIT.

The synchrotron X-ray diffraction study for the single crystal has revealed the structural distortion from tetragonal to monoclinic with  $\sqrt{2a} \times \sqrt{2b} \times c$ , where *a*, *b* and *c* are the lattice parameters in the PM phase (Fig.1). In the FI phase, four Cr sites, two K sites and eight O sites become crystallographically inequivalent. Four Cr sites form the coupled four-chains running in the *c*-direction by sharing corner oxygen in the Cr<sub>8</sub>O<sub>16</sub>-framework. In this geometry, the alternations of Cr-Cr bond and Cr-O bond along the *c*-direction exist in the coupled four-chains, resulting in a weak tetramerization of the Cr ions. Such bond alternation could be responsible for the opening of band gap.



Fig.1 Crystal structure of K<sub>2</sub>Cr<sub>8</sub>O<sub>16</sub> at 20 K viewed from *c*-axis.

K. Hasegawa, M. Isobe, T. Yamauchi, H. Ueda, J. Yamaura, H. Gotou, T. Yagi, H. Sato, Ueda *Phys. Rev. Lett.* **2009**, *103*, 146403. [2] M. Sakamaki, T. Konishi, Y. Ohta, *Phys. Rev. B* **2009**, *80*, 024416.

Keywords: synchrotron x-ray diffraction, single crystal, phase transition

## MS54.P19

Acta Cryst. (2011) A67, C579

## Synthesis and characterization of a new solid solution with lyonsite type structure

Mongi Ben Amara,<sup>a</sup> Mourad Hidouri,<sup>a</sup> Miniar Mabrouk,<sup>a</sup> María Luisa López,<sup>b</sup> Carlos Pico,<sup>b</sup> <sup>a</sup>UR Matériaux Inorganiques, Faculté des Sciences, Université de Monastir, 5019 Monastir, Tunisie. <sup>b</sup>Departamento de Química Inorgánica I, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, (Spain). Email: mongi.benamara@fsm.rnu.tn

The investigation of the Li<sub>2</sub>MoO<sub>4</sub>-NiMoO<sub>4</sub>-Fe<sub>2</sub>(MoO<sub>4</sub>)<sub>3</sub> quasi system led to the synthesis and characterization of a bi-dimensional lyonsitetype solid solution, delimited by the compositions: Li<sub>2</sub>Ni<sub>2</sub>(MoO<sub>4</sub>)<sub>3</sub>  $_{Li3}$ Fe(MoO<sub>4</sub>)<sub>3</sub> and Li<sub>2</sub>Ni<sub>1.2</sub>Fe<sub>0.53</sub>(MoO<sub>4</sub>)<sub>3</sub>, belonging to the Li<sub>2+x</sub>Ni<sub>2</sub>.  $_{2x}Fe_{1+x}(MoO_4)_3$  and  $Li_2Ni_{2-x}Fe_{0.33x}(MoO_4)_3$  systems. The samples were synthesized by a glycine soft-combustion process and characterized by ICP analysis, IR spectroscopy, DTA and powder X-ray diffraction. The cation distribution was established from a single crystal Xray study of the  $Li_2Ni_{1.5}Fe_{0.33}(MoO_4)_3$  composition. In terms of the  $M(1)M(2)_2M(3)(XO_4)_3$  general formula of the lyonsite, the following occupancies were found: 0.87 Li in M(1), (0.34 Li + 0.50 Ni + 0.16 Fe) in M(2) and (0.48 Li + 0.52 Ni) in M(3). All these sites are six coordinated. The M(1) sites form zig-zag chains of edge-sharing trigonal prisms that run along the [100] direction (Figure 1). The M(2) sites are edge- and corner-sharing to form layers perpendicular to the [001] direction (Figure 2). The M(3) sites are face sharing to produce infinitive chains propagating along the [001] direction (Figure 3). The connection of the chains is ensured by MoO<sub>4</sub> tetrahedra leading to the formation a three-dimensional network.

The existence of vacancies within the M(1) sites, suggests a high mobility of lithium along the chains of edge-sharing  $M(1)O_6$  prisms. However, ionic conductivity measurements, performed by the impedance spectroscopy technique showed the material to be a poor ionic conductor, with activation energy of 1.08 eV. This behavior is attributed to the fact that the mobility of lithium is attenuated due the one-dimensional character to a one-dimensional pathway.



Keywords: molybdate, structure, conductivity