Structured study of ferromagnetic metal-insulator transition in hollandite chromium oxide, $KCrO_3$

MS54.P18

Structural study of ferromagnetic metal-insulator transition in hollandite chromium oxide, $KCrO_3$

Y. Nakao, H. Nakao, Y. Hamada, H. Hidouri, M. Ben Amara, M. Isobe, A. Nakao, Y. Yamaki, Y. Ueda, H. Gotou, T. Yagi, H. Sato, Ueda

The hollandite oxides with the general chemical formula $A_2M_2O_8$ ($A = $ alkaline metal; $M = $ transition metal) are a kind of mineral. They are mixed valent oxides with $M^{IV}/M^{III} = 1/3$ (an averaged valence of M^{III}. The crystal structure consists of the tubular M_2O_8-framework and A-cations at the tunnel sites of the M_2O_8-framework. The M_2O_8-framework is constructed from the double chains (zigzag-chains) formed by sharing the edges of MO_6 octahedra. The chromium hollandite $KCrO_3$, which at room temperature is tetragonal and a paramagnetic metal (PM), becomes ferromagnetic with $T_c = 180$ K [1], which is explained by the double exchange mechanism [2], but surprisingly this ferromagnetic metal phase undergoes a transition to an insulator at lower temperature, retaining ferromagnetism. The metal-insulator transition (MIT) at $T_{mi} = 95$ K is quite unique; it has a half-metal (metal half-metal) to insulator transition in a ferromagnetic state and the resulting low temperature phase is a rare case of a ferromagnetic insulator (FI). In order to elucidate this unique ferromagnetic MIT, it is crucial to study the crystal structure across the MIT.

The synchrotron X-ray diffraction study for the single crystal has revealed the structural distortion from tetragonal to monoclinic with $\gamma a = \gamma b = 12c$, where a, b and c are the lattice parameters in the PM phase (Fig.1). In the FI phase, four Cr sites, two K sites and eight O sites become crystallographically inequivalent. Four Cr sites form the coupled four-chains running in the c-direction by sharing corner oxygen in the CrO_6-framework. In this geometry, the alternations of Cr-Cr bond and Cr-O bond along the c-direction exist in the coupled four-chains, resulting in a weak tetramerization of the Cr ions. Such bond alternation could be responsible for the opening of band gap.

Fig.1. Crystal structure of $KCrO_3$ at 20 K viewed from c-axis.

Keywords: Antimony and Iron phosphate, Rietveld refinement, Raman and IR spectroscopy

MS54.P19

Synthesis and characterization of a new solid solution with lysomite type structure

Mongi Ben Amara, Mourad Hidouri, Miniar Mabrouk, Maria Luisa López, Carlos Rico, UR Matériaux Inorganiques, Faculté des Sciences, Université de Monastir, 5019 Monastir, Tunisia.

The investigation of the $Li_xMoO_4-NiMoO_4(Fe_xMoO_4)$ quasi system led to the synthesis and characterization of a bi-dimensional lysite-like solid solution, delimited by the compositions: $LiNi_xMoO_4$, Fe_xMoO_4 and $LiNi_xFe_xMoO_4$, belonging to the $LiNi_{1+\delta}Fe_{1-\delta}MoO_4$ and $LiNi_{1+\delta}Fe_{1-\delta}MoO_4$ systems. The samples were synthesized by a glycine soft-combustion process and characterized by XRD analysis, IR spectroscopy, DTA and powder X-ray diffraction. The cation distribution was established from a single crystal X-ray study of the $LiNi_{1+\delta}Fe_{1-\delta}MoO_4$ composition. In terms of the $M(1)M(2)M(3)(XO_4)_2$ general formula of the lysite, the following occupancies were found: 0.87 Li in $M(1)$, (0.34 Li + 0.50 Ni + 0.16 Fe) in $M(2)$ and (0.48 Li + 0.52 Ni) in $M(3)$. All these sites are six coordinated. The $M(1)$ sites form zig-zag chains of edge-sharing trigonal prisms that run along the $[001]$ direction (Figure 1). The $M(2)$ sites are edge- and corner-sharing to form layers perpendicular to the $[001]$ direction (Figure 2). The $M(3)$ sites are face sharing to produce infinite chains propagating along the $[001]$ direction (Figure 3). The connection of the chains is ensured by MoO$_6$ tetrahedra leading to the formation a three-dimensional network.

The existence of vacancies within the $M(1)$ sites, suggests a high mobility of lithium along the chains of edge-sharing $M(1)O_6$ prisms. However, ionic conductivity measurements, performed by the impedance spectroscopy technique showed the material to be a poor ionic conductor, with activation energy of 1.08 eV. This behavior is attributed to the fact that the mobility of lithium is attenuated due to the one-dimensional character to a one-dimensional pathway.

Fig. 1: chain of $M(1)O_6$ prisms
Fig. 2: layer of $M(2)O_6$ octahedra
Fig. 3: chain of $M(3)O_6$ octahedra

Keywords: molybdate, structure, conductivity