Temperature dependence of pre-edge feature in Ti K-edge XANES spectra for ATiO\textsubscript{2}, A\textsubscript{2}TiO\textsubscript{3} (A=Mg, Ca, Fe, Sr and Ba) and TiO\textsubscript{2} compounds

Tomotaka Nakatana, Hiroki Okuderaa, Akihiko Nakatsukab and Akira Yoshiasa

aGraduate School of Natural Science, Kanazawa University, Kanazawa 920-1192 (Japan)
bDepartment of Advanced Materials Science and Engineering, Yamaguchi University, Ube 755-8611 (Japan).

E-mail: 118d8052@st.kumamoto-u.ac.jp

X-ray absorption near edge structure (XANES) provides important information on the electronic structure and local symmetry around X-ray absorption atom. There are three distinct pre-edge peaks correspond to electronic transitions in Ti K-edge XANES spectra. The composition, structure and temperature dependence of XANES spectra on three peaks was investigated. We measured Ti K-edge XANES spectra of various titanates, MgTiO\textsubscript{3}, CaTiO\textsubscript{3}, SrTiO\textsubscript{3}, BaTiO\textsubscript{3}, Mg, TiO\textsubscript{2}, Fe, TiO\textsubscript{2}, TiO\textsubscript{2} rutile and anatase, in the temperature range from 20K to 800K. Ti atoms are placed in TiO\textsubscript{6} octahedral and TiO\textsubscript{4} tetrahedral sites in crystal structures. The measurements of Ti k-edge XANES spectra were carried out in transmission mode at beam line BL-7C and BL-9A of the Photon Factory in KEK, Tsukuba. High temperature X-ray absorption measurements were made under a helium atmosphere. XANES spectra of all sample on each peaks is increasing as the temperature increases except for tetragonal BaTiO\textsubscript{3} and tetragonal SrTiO\textsubscript{3} phases. TiO\textsubscript{2} rutile and anatase have largely different rate of rising pre-edge absorption to the temperature. The XANES spectra in the high temperature region were strongly affected by the harmonic thermal vibration of the atoms. There is an interesting relation between electronic transition and local and anatase have largely different rate of rising pre-edge absorption to the temperature. The XANES spectra on each peaks is increasing as the temperature increases.

Acknowledgments: The work was supported by Grant-in-Aid for Scientific Research on Innovative Areas “Functional Materials Design by Chemical Science” from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Keywords: XANES, pre-edge peak, titanate

A gold(III) complex of the neuroepileptic drug gabapentin

Demetrius C. Levendis, Ahmed Shaikjee, Helder M. Marques and Richard Mampa, Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, PO WITS, 2050, Johannesburg, (South Africa). Email: demetrius.levendis@wits.ac.za

Gabapentin, a neuro-epileptic drug, has been the subject of interest lately as new polymorphs, [1] salts and hydrates have been reported, as well as the high pressure crystallisation of a novel heptahydrate [2]. The first complexes with transition metal complexes, Cu(II) and Zn(II) were reported recently by Braga and co-workers [3]. Since gold is known to have pharmaceutical applications [4] we were interested to see if we could prepare a Au(III)-Gp complex.

Acknowledgments: The work was supported by the Compiling Encyclopedia Foundation, Tajrish, Tehran, Iran.

Keywords: neuro-epileptic drug, gold(III) complex, gabapentin

Crystal structure of Zn complex with chelidamic acid and acridine

Zohreh Derikvand, Andya Nemati, Masomeh Mansouri, Department of Chemistry, Faculty of Science, Islamic Azad University, Khorramabad Branch, Khorramabad, (Iran). Email: zderik@yahoo.com

4-Hydroxypyridine-2,6-dicarboxylic acid as carboxylate derivative has drawn extensive attention in coordination chemistry. This ligand could potentially provide various coordination motifs to form both discrete and consecutive metal complexes under appropriate synthesis condition [1,2]. We prepared new mononuclear complex of Zn(II) containing 4-hydroxypyridine-2,6-dicarboxylic acid...