search with the program PHASER [2] coupled to density modification with the program SHELXE [3] and runs on a grid of computers using CONDOR [4]. This method has been successfully used for ab Initio solution at 2 Å of several previously unknown proteins.

Currently available software, is not suited for the analysis of small fragments, made up of less than 30 residues. Underlying methods are focused on generality, or fold optimization, which is misleading given that in our case the environment is unknown.

ARCIMBOLDO can exploit extremely small fragments as long as they are very precise. BORGES has been conceived so as to identify the most similar fragments to the one requested by the user, but its main aim is to collect the most variable and clustered fragment libraries around the given model, rather than an exact replica. In fact the user may well choose to give as input a predicted model that should be close to a part of the structure but fails to solve it. It is obvious that variation from this point is essential to make solution possible at all.

We are running such a project in cooperation with the firm CATON S.L. and the supercomputer FCSCL in Leon. The increase in computational power provided by the supercomputer environment will allow to fully exploit the implementation of alternative pdb-based search fragments.


Keywords: computation, macromolecular phasing, databases

MS58.P14

New features in ARCIMBOLDO: a tutorial
Dayte D. Rodríguez Martínez, Massimo Sammito, Iñaki Martínez de Ilanduya, Kathrin Meindl, Isabel Usón, Department of Structural Biology, Instituto de Biología Molecular de Barcelona (IBMB-CSIC) Barcelona Science Park, (Spain). 2ICREA (Spain). E-mail: dayte.rodriguez@ibmb.csic.es

ARCIMBOLDO[1] is a program originally designed to phase macromolecules Ab Initio at resolutions as low as 2 Å. It can be downloaded free to academics from (http://chango.ibmb.csic.es/ ARCIMBOLDO). This method has successfully phased several previously unknown proteins, in different spacegroups, with up to 2x300 residues in the asymmetric unit. It is based on the combination of localizing small model fragments with PHASER[2], and density modification with SHELXE[3]. Such models consist, for example, in polyalanine alpha-helices, expected to be present in the structures by secondary structure prediction. The method operates on a multisolution basis, as many different structural hypotheses have to be ensemble at early stages, when figures of merit cannot effectively discriminate between correct substructures, eventually leading to a solution, and false ones that will remain unsuccessful. Therefore, the computations are distributed over a grid using CONDOR[4].

The new features implemented ARCIMBOLDO and their use to exploit prior information within different phasing scenarios (Ab Initio, low homology models or fold prediction, NMR models, combination with anomalous phasing information, etc) will be illustrated in the format of a tutorial illustrated through various test cases. ARCIMBOLDO is now also adapted to run on the supercomputer Calendula at the FCSCL.

Keywords: software, computing, protein

MS58.P15


CCP4 6.2 – New and enhanced software for Protein Crystallography
Ronan Keegan, Charles Ballard, Eugene Krisinel, David Waterman, Martyn Winn, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Oxfordshire, (UK). 2STFC Daresbury Laboratory, Cheshire, (UK). E-mail: ccp4@ccp4.ac.uk

CCP4 [1] has been serving the software needs of the protein crystallography community for more than 30 years. In this time the CCP4 Suite of software has been refined through contributions from some of the leading developers in the field of protein crystallographic software and the feedback of both expert and novice users. Today it is a highly comprehensive suite, providing tools and packages covering all aspects from data collection through to structure deposition.

Here we present details of the latest release series of the Suite, version 6.2. This release brings updates to many of the key programs. The latest version of the data processing program Mosflm and its graphical interface, iMosflm are included. The new interface puts emphasis on making the program much more easy to use and guiding the user through each of the steps involved in processing X-ray image data. This release also sees the return of the xia2 automated data processing program, which takes as input a set of raw images and produces a merged MTZ file. Other updates include the Pointless program for Laue group and spacegroup determination, Phaser for experimental phasing, molecular replacement and combining both in its MRSAD function, and Buccaneer for automated model building which now facilitates building using phases derived from molecular replacement. The refinement program Refmac has also been updated with new features including Jelly-body refinement for refinement at low resolution and the use of map sharpening to help refinement.

In addition, some new programs have been incorporated. Most notably Multicomb for multivariate density modification, and Sloop which performs loop building by finding gaps in a chain and using fragments from the Richardson’s Top500 library of structures to fill the gaps. CCP4 also aims to enhance its functionality related to the maintenance and use of data on small molecules (ligands). Firstly, a considerably larger library of chemical compounds will be provided with the Suite. Extended search functions will be provided to allow for efficient retrieval of known compounds or their close analogs. Secondly, existing functions for generating restraint data for new ligands will be enhanced by the inclusion of relevant software, such as ProDRG, as well as a new graphics program, jLigand, for the creation and manipulation of ligands.


Keywords: ab initio phasing, macromolecule, supercomputing