electrical properties into the ligand and organize the compound on the surfaces for single-molecule or single-molecule layer study.

We acknowledge the support of NSFC, the National Basic Research Program.

Keywords: magnetism, chirality, iron

MS66.P16

Crystal Structures and NLO properties of Quinoline Derivatives

Pedro S. Pereira Silva,1 Hasnaa El Ouazzani,2 Manuela Ramos Silva,3 José António Paixão,4 Bouchta Sahraoui,5 “CEMDRX, Physics Department, University of Coimbra, Coimbra (Portugal).”

“The calculation of the nonlinear optical (NLO) properties of solids using structural data has been stimulated by the increasing importance of the communications industry and the parallel need for materials having suitable properties.”

The following solids have been prepared by acid-base reactions and their structures have been determined by single-crystal X-ray diffraction: 6-methoxysulphonium trflate, 6-methoxysulphonium hydrogenesulphate trihydrate and 6-aminoquinolinium iodide monohydrate.

Using the methodology that we have developed recently [1], we calculated the nonlinear susceptibility tensor components for these non-centrosymmetric salts. The molecular hyperpolarizabilities were calculated using Time Dependent Density Functional Theory, Hartree-Fock and Semi-empirical methods.

The second and third order nonlinear optical properties of these salts will be presented.

The theoretical predictions will be compared with such experimental results.

Keywords: nonlinear optical properties, structure-physical properties relationships, organic salts

MS66.P18

Low dimensional Cu(II) complexes

Manuela Ramos Silva,1 Consuelo Yuste-Vivas,2 Ana Magalhães,3 Laura C. J. Pereira,4 Joana Coutinho,4 José António Paixão,4 “CEMDRX, Physics Department, University of Coimbra, Coimbra, Portugal.”

“Molecular based magnets capitalize on the flexibility inherent in carbon chemistry. A rational choice of ligands can be made to control the dimensionality of the system in order to enhance quantum effects. Two new copper complexes were synthesized using the solvothermal technique and their structure determined using single crystal X-ray diffraction.”

In compound 1, phenanthonilne-isophtalic acid-Cu(II) compound, the metal ions are assembled in dimeric complexes. Each Cu(II) ion is in a distorted octahedral environment, surrounded by four nitrogen atoms from two phenanthonilne molecules and by two oxygen atoms from an isophtalate ion. The isophtalate ion bridges two metal ions (see figure). The unit cell parameters are: a = 13.3116(4), b = 13.4168(4), c = 22.4838(6) Å, α = 83.800(2), β = 85.894(2), γ = 77.469(2)°, V = 3892.20(19) Å³, space group P-1.

Keywords: fullerene structure, Jahn-Teller distortion

MS66.P17

Distortion of the charged C60 fullerene cage in the ionic complexes

Salavat Khasanov,4 Dmitri Konarev,1 Alexey Kuzmin,4 Sergey Simonov,4 Leokadia Zorina,4 “Institute of Solid State Physics, Chernogolovka, Russia,” Institute of Problems of Chemical Physics, Chernogolovka, Russia, “Moscow State University, Moscow, (Russia).”

“Ionic fullerene C60 complexes show a variety of promising physical properties such as metallic conductivity, superconductivity and ferromagnetism. Great interest is directed to the intrinsic structural and electronic properties of discrete fullerene C60− ions. The Jahn-Teller theorem predicts a distortion of C60 from icosaheiral symmetry when additional electrons are added to the degenerated t2g LUMO orbital of C60. The presence or absence of such distortion in the fullerene anions are of particular interest since the degeneracy strongly affects the electronic structure of fullerene and to a great extent defines such phenomena as superconductivity and ferromagnetism. Fullerene C60− is nearly a spherical molecule and fullerene anions are disordered in most ionic complexes and salts. Precision geometry of ordered fullerene anions was determined in a few compounds only [1-3]. The new complex [Co(dppe)3]−{(C60)−(CH2)4} [4] gives another crystal structure with the ordered C60− radical anions making it possible the C60− distortion to be analyzed. An elongation of the fullerene cage by 0.025Å was found.”

Extended Hückel method calculations showed the 180 and 710 cm⁻¹ splitting of the C60 degenerated LUMO levels. Additionally we present a comparative analysis of the C60− distortion parameters for the ordered structures known and compare the t2g orbital splitting from extended Hückel method calculations and experimental data.

Keywords: fullerene, structure, Jahn-Teller distortion

Poster Sessions