obtained by X-ray diffraction and Raman spectroscopy. The chemical stoichiometry was determined by X-ray photoelectron spectroscopy (XPS), obtaining WO$_3$. By X-ray diffraction obtained that the as-grown WO$_3$ films present mainly the crystalline phase monoclinic, whose lattice parameters values: $a = 3.846 \, \text{Å}$, $b = 7.5449 \, \text{Å}$, $c = 7.3066 \, \text{Å}$, $\beta = 90.924^\circ$. The Raman spectrum of the as-deposited film shows intense peaks at 801, 710, 262 and 61 cm$^{-1}$, which are typical Raman peaks of crystalline WO$_3$ (m-phase) that correspond to the stretching vibrations of the bridging oxygen, which are assigned to W-O stretching (v) and W-O bending (b) modes respectively. Annealing WO$_3$ thin films at the temperatures range from 100 to 500°C during 10 min in a nitrogen atmosphere; they changed of crystalline phase about 300°C of monoclinic to orthorhombic, which was corroborated by X-ray diffraction and Raman spectroscopy

Keywords: vibrational, dispersion, X-ray

MS75.P01

Atomic diffusion in liquid B$_2$O$_3$ under pressure from *ab initio* molecular dynamics

Satoshi Ohmura, Fuyuki Shimojo, Department of Physics, Kumamoto University, Kumamoto 860-8555, (Japan). E-mail: 095d0003@st.kumamoto-u.ac.jp

Transport properties of covalent liquids under pressure are very interesting in the sense that they show unexpected pressure dependence. For a number of covalent liquids, such as SiO$_2$ and GeO$_2$, the diffusivity of atoms was shown to increase with pressure. It is, however, unclear how the rearrangement process of the covalent bonds is affected by compression.

In order to clarify the microscopic mechanism of atomic diffusion in covalent liquids under pressure, we performed *ab initio* molecular dynamics simulations for liquid B$_2$O$_3$ which is a typical covalent liquid.

Figure shows the calculated diffusion coefficients D_i for α-B and O atoms as a function of pressure. Clearly, liquid B$_2$O$_3$ has a diffusion maximum around 10 GPa. The decrease in the diffusivity above a certain pressure is not surprising but quite natural. It is, however, unusual that the diffusivity of O atoms is reduced more quickly than that of B atoms with compression above 10 GPa.

We discuss the microscopic origin of this anomalous pressure dependence of the diffusivity. Around 10 GPa, covalent bonds are always exchanged by concerted reaction while the non-bridging oxygens (NBO) are needed for atomic diffusion at ambient pressure. These facts suggest that the atomic diffusion with concerted reaction gives the diffusion maximum. At about 100 GPa, almost all B atoms are overcoordinated to O atoms while only 2/3 O atoms are overcoordinated to B atoms. This asymmetry property gives rise to difference in the pressure dependence of the diffusivity. These dynamic properties under pressure will be commonly observed in other covalent liquids, such as SiO$_2$.

Keywords: *ab initio* molecular dynamics, high-pressure physics, covalent liquids

MS75.P02

Is there a phase transition between the two liquid states in tin tetraiodide?

Kazuhito Fuchizaki,a Nozomu Hamaya,a Yoshinori Katayama,a Takumi Kikegawa,a Department of Physics, Ehime University, Matsuyama, (Japan), bDepartment of Physics, Ochanomizu University, Tokyo, (Japan), cJapan Atomic Energy Agency, Hyogo, (Japan), dInstitute of Materials Structure Science, KEK, Tsukuba, (Japan). E-mail: fuchizak@phys.sci.ehime-u.ac.jp

We have reported that in tin tetraiodide there are two liquid states, which are two thermodynamically stable counterparts of the metastable amorphous solid states [1]. This finding was established by in-situ synchrotron x-ray diffraction measurements, which were carried out under high pressures up to about 4 GPa.

However, no clear-cut experimental evidence has been obtained as to the existence of phase transition between the two liquid states, although the mean-field theoretical analyses of the experimental findings based on both Son-Patashinski’s [2] and Franzese-Stanley’s [3] models support the existence of a first-order transition [4].

In order to clarify the point, a close examination was made around the region in question in the temperature-pressure phase diagram. This includes in-situ measurements of structure and density using synchrotron x-ray diffraction and absorption. Variation of the local structure, which is characterized by a suitably defined local order parameter, showed a smooth behavior with pressure, implying a gradual change in the local structure. However, a jump, though very subtle, in the density variation on compression was detected at around 970 K and 1.5 GPa, just above the break point in the melting curve of the low-pressure crystalline state. The result is to be reconfirmed in the near future.

We have also examined on the theoretical side the Son-Patashinski model in some detail. To go beyond the mean-field calculations, the effects of fluctuations on the stability of the phases were investigated using a lattice version of the model. The transition between the two liquid phases was, unlike mean-field’s prediction, found to be smeared out partially by the finite size effects of the system. To extract the exact nature of the transition, which the model possesses, the multicanonical ensemble simulations are currently in progress.

In conclusion, there is a phase transition between the two liquid states in tin tetraiodide, but the transition is of weak first order.

References:

Keywords: phase, liquid, pressure

MS75.P03

Structure of liquid transition metal hydrogen alloys under high pressure

Yoshinori Katayama, Hiroyuki Saitoh, Katsutoshi Aoki, High Pressure Science Group, Condensed Matter Science Division, Quantum Beam Science Directorate, (Japan). Atomic Energy Agency, Hyogo, (Japan). E-mail: katayama@spring8.or.jp

Hydrogen reacts with many metals and form metal hydrides. In transition metal hydrides, hydrogen atoms usually occupy interstitial sites and the crystalline lattice expands. Though there are many studies on crystalline metal hydrides, almost nothing is known about liquid
Poster Sessions

metal-hydrogen systems. To study structure of liquid transition metal hydrogen alloys, we have performed in-situ energy-dispersive x-ray diffraction measurements at high pressures and high temperatures using a cubic-type multi-anvil press on BL14B1 at SPring-8 synchrotron facility. Pure metal wire was used as a starting material and LiAlH₄ was used as a hydrogen source. The x-ray diffraction measurements on liquid pure metals were also performed for comparison.

FeH₃ is one of the most studied hydrides under high pressure. A solubility of hydrogen in iron is small at ambient conditions but iron and hydrogen react under high pressure and FeH₃ (x=0.8) is formed at 6.7GPa and 250°C [1]. The melting temperature of FeH₃ has been reported by several groups and it is lower than that of pure iron by 500°C at 5 GPa [2], [3]. Our X-ray measurements confirmed the hydrogenation of iron and the decrease of the melting temperature. The pair correlation functions, which are obtained by Fourier transformation of structure factor, indicate that the Fe-Fe nearest neighbor distance in FeH₃ is slightly longer than that in pure Fe [4]. Similar amount of elongations of the atomic distance were observed also in NiH₂ and CoH₂. In spite of a suggestion of a large decrease of melting temperature in VH₃, [5], we have not observed melting transition in our X-ray measurements for VH₃.

We thank Y. Fukai for discussion. This work was supported by New Energy and Industrial Technology Development Organization (NEDO) under "Advanced Fundamental Research Project on Hydrogen Storage Materials".

Keywords: liquid, hydride, pressure

MS76.P01

Experimental and DFT studies of (E)-1-(3-iodophenylimino)met hyl)naphthalene 2-ol
Tufan Akbal, a Ahmet Erdönmez, a and Aysen Alaman Aagar, a
a Department of Physics, Ondokuz Mayıs University, Samsun, (Turkey). b Department of Chemistry Ondokuz Mayıs University, Samsun, (Turkey), E-mail: tukbal@omu.edu.tr

The title compound, C₁₇H₁₇INO, crystallizes in an enol tautomer form.

The title compound, (E)-1-(3-bromophenylimino)methyl)naphthale n-2-ol, has been synthesized and characterized by IR, UV, electronic spectroscopy, and X-ray single-crystal determination. The single crystal X-ray diffraction analysis of the title compound, C₁₇H₁₇BrNO , reveals that the crystal structure is stabilized in the solid state as an enol–imine tautomer, with a strong intramolecular O–H⋯N hydrogen bond. Molecular geometry from X-ray of the title compound in the ground state have been compared using the density functional method (B3LYP) with 6-31G(d,p) basis set. To determine conformational flexibility, molecular energy profile of the title compound was obtained by DFT calculations with respect to two selected degrees of torsional freedom, which were varied from −180° to +180° in steps of 10°. Besides, molecular electrostatic potential (MEP), natural bond orbitals (NBO), frontier molecular orbitals (FMO), and thermodynamic properties were performed at B3LYP/6-31G(d,p) level of theory.

The C9-O1 and C7-N1 bond lengths verify the enol-imine tautomer form. These distances agree with the literature [1]. The C1- II bond length in is also in a good agreement with the corresponding distances in the literature [2].

Keywords: density functional theory (DFT), crystal and molecular structure studies, tautomerism

MS76.P02

Experimental and DFT computational study on hexaquaamagnesium(II) acesulfamate
Günes Demirtas, a Necmi Değe, a Hasan İçbudak, a Ömer Yurdakul, a and Orhan Büyükgüngör, a
a Department of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayis University, 55139 Samsun, (Turkey), b Department of Chemistry of Arts and Sciences, Ondokuz Mayis University, 55139 Samsun, (Turkey). E-mail: gunesd@omu.edu.tr

The parameters of unit cell are a=6.9404, b=8.5775, c=8.7200 a=68.564, b=78.640, γ=81.260 and Z=1. The crystal structure of the title compound, [Mg(H₂O)₆](C₆H₅NO₃).[Mg(H₂O)₆], was determined at 296 K. The complex crystallizes in centrosymmetric triclinic space group P-1 and Mg²⁺ atom is coordinated by six O atoms from six water molecules. The ligands in the Hexaaquamagnesium(II) Acesulfamate are linked with three dimension via O—H⋯O and O—H⋯N interactions. In this paper, the geometric parameters which are obtained from X-ray determination and theoretical parameters which are calculated by using density functional theory (B3LYP) with the 6-31G basis sets were compared. Experimental IR study, theoretical IR calculations, molecular electrostatic potential and frontier molecular orbital calculations were also put in this paper.

Keywords: acesulfame, X-ray, DFT

MS76.P03

Experimental and DFT studies of (2-Hydroxyethyl) tri phenylphosphonium chloride
Ümit Ceylan,a Hasan Tanak,a Erkan Türkkan,a Ömer Dereli,a and Orhan Büyükgüngör,a,b,c
a Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayis University, 55139 Samsun, (Turkey), b Department of Chemistry, Faculty of Arts and Sciences, Amasya University, 05100 Amasya, (Turkey), c Department of Physics, A.K. Education Facult, Selçuk University, Meram, 42090 Konya, (Turkey). E-mail: uceylan@omu.edu.tr

Triphenylphosphonium compounds and their various derivatives are key reagents in the Wittig reactions and are used to convert aldehydes and ketones into alkynes [1], specifically in applications ranging from the synthesis of simple alkynes to the construction of complex biologically active molecules in the pharma-ceutical research [2]. They are also an important class of isoaromatic compounds and have widespread applications for their antimicrobial and anticancer activities [3].

In the crystal structure of the title compound, C₂H₁₀O₆P⁺CP, the cations and anions are linked by intermolecular C—H⋯O and C—H⋯N interactions. In this paper, the geometric parameters which are obtained from X-ray determination and theoretical parameters which are calculated by using density functional theory (B3LYP) with the 6-31G basis sets were compared. Experimental IR study, theoretical IR calculations, molecular electrostatic potential and frontier molecular orbital calculations were also put in this paper.

Keywords: acesulfame, X-ray, DFT